000 04114nam a22004453i 4500
001 EBC5752263
003 MiAaPQ
005 20240724113645.0
006 m o d |
007 cr cnu||||||||
008 240724s2019 xx o ||||0 eng d
020 _a9788024639840
_q(electronic bk.)
020 _z9788024639185
035 _a(MiAaPQ)EBC5752263
035 _a(Au-PeEL)EBL5752263
035 _a(OCoLC)1099319894
040 _aMiAaPQ
_beng
_erda
_epn
_cMiAaPQ
_dMiAaPQ
050 4 _aLB3060.32.C65 .K663 2019
082 0 _a371.260285
100 1 _aKomarc, Martin.
245 1 0 _aComputerized Adaptive Testing in Kinanthropology :
_bMonte Carlo Simulations Using the Physical Self-Description Questionnaire.
250 _a1st ed.
264 1 _aPrague :
_bKarolinum Press,
_c2019.
264 4 _c©2019.
300 _a1 online resource (132 pages)
336 _atext
_btxt
_2rdacontent
337 _acomputer
_bc
_2rdamedia
338 _aonline resource
_bcr
_2rdacarrier
505 0 _aCover -- Contents -- Acknowledgements -- 1. Brief introductionto measurement(in Kinanthropology) -- 2. Historical Pathsto Modern Test Theory -- 3. Groundwork forItem Response Theory -- 4. Item Response Theory (IRT) -- 4.1 Introduction -- 4.2 Unidimensional dichotomous IRT models -- 4.3 Unidimensional polytomous IRT models -- 4.4 Assumptions required for unidimensional IRT models -- 4.5 Parameter estimation in IRT models -- 4.5.1 Latent trait (θ) estimation -- 4.5.2 Item parameters estimation -- 4.6 Information and standard error of the θ estimates -- 5. Computerized AdaptiveTesting (CAT): Historicaland conceptual origins -- 6. Testing algorithmsin unidimensionalIRT-based CAT -- 6.1 Starting -- 6.2 Continuing -- 6.3 Stopping -- 6.4 Practical issues related to item selection in CAT -- 6.4.1 Item pool -- 6.4.2 Content balancing -- 6.4.3 Exposure control -- 6.5 Evaluation of item selection and trait estimation methodsused in computerized adaptive testing algorithms -- 7. Empirical part -problem statement -- 8. Aims and hypotheses -- 9. Methods -- 9.1 Item pool, IRT model used for item calibration,dimensionality analysis -- 9.1.1 General description of the item pool -- 9.1.2 Item calibration -- 9.1.3 Dimensionality analysis -- 9.2 CAT simulation design and specifications -- 9.2.1 Step 1. Simulate latent trait values (true θ) -- 9.2.2 Step 2. Supply item parameters for the intended item pool -- 9.2.3 Step 3. Set CAT algorithm options -- 9.2.4 Step 4. Simulate CAT administration -- 9.3 Analysis of simulation results -- 10. Results -- 10.1 Dimensionality -- 10.2 Number of administered items in CAT simulation -- 10.3 Bias of the CAT latent trait estimates -- 10.4 Correlations -- 11. Discussion -- 12. Conclusions -- Summary -- References -- Appendices.
505 8 _aAppendix A - IRT parameters (a - discrimination and b's -thresholds) for the Physical Self-Description Questionnaireitems (source: Flatcher &amp -- Hattie, 2004) -- Appendix B - R code used for the simulation of the PSDQ CAT -- Appendix C - Test information and corresponding standarderror for the Physical Self-Description Questionnaireitem pool -- Appendix D - Example of R code used to create Figure 1 -- Appendix E - Online application for adaptive testing usingthe Physical Self-Description Questionnaire -- List of Tables -- List of Figures.
588 _aDescription based on publisher supplied metadata and other sources.
590 _aElectronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2024. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
650 0 _aComputer adaptive testing.
650 0 _aAnthropology.
650 0 _aItem response theory.
655 4 _aElectronic books.
776 0 8 _iPrint version:
_aKomarc, Martin
_tComputerized Adaptive Testing in Kinanthropology: Monte Carlo Simulations Using the Physical Self-Description Questionnaire
_dPrague : Karolinum Press,c2019
_z9788024639185
797 2 _aProQuest (Firm)
856 4 0 _uhttps://ebookcentral.proquest.com/lib/orpp/detail.action?docID=5752263
_zClick to View
999 _c9950
_d9950