000 | 05221nam a22004453i 4500 | ||
---|---|---|---|
001 | EBC3440197 | ||
003 | MiAaPQ | ||
005 | 20240729125753.0 | ||
006 | m o d | | ||
007 | cr cnu|||||||| | ||
008 | 240724s2012 xx o ||||0 eng d | ||
020 |
_a9781781830529 _q(electronic bk.) |
||
020 | _z9781906574901 | ||
035 | _a(MiAaPQ)EBC3440197 | ||
035 | _a(Au-PeEL)EBL3440197 | ||
035 | _a(CaPaEBR)ebr11094597 | ||
035 | _a(OCoLC)919481093 | ||
040 |
_aMiAaPQ _beng _erda _epn _cMiAaPQ _dMiAaPQ |
||
050 | 4 | _aQA188 -- .V387 2013eb | |
082 | 0 | _a512.9434 | |
100 | 1 | _aVatsa, B.S. | |
245 | 1 | 0 | _aTheory of Matrices. |
250 | _a4th ed. | ||
264 | 1 |
_aTunbridge Wells : _bNew Academic Science, _c2012. |
|
264 | 4 | _c©2013. | |
300 | _a1 online resource (333 pages) | ||
336 |
_atext _btxt _2rdacontent |
||
337 |
_acomputer _bc _2rdamedia |
||
338 |
_aonline resource _bcr _2rdacarrier |
||
505 | 0 | _aCover -- Preface -- Contents -- Chapter 1 Matrices -- 1.1 Definition and Examples of a Matrix -- 1.2 Diagonal, Scalar,Unit, And Triangular Matrix -- 1.3 Equal and Unequal Matrices -- 1.4 The Transpose of a Matrix: Symmetric and Skew-Symmetric -- 1.5 The Conjugate of a Matrix: Hermitian and Skew-Hermitian Matrices -- 1.6 Submatrics -- Submatrices -- Chapter 2 Algebra of Matrices -- 2.1 Addition of Two Matrices -- 2.2 Properties of Addition -- 2.3 Scalar Multiples of Matrices -- 2.4 Multiplication of Matrices -- 2.5 The Properties of Matrix Multiplication -- 2.6 Powers of Matrices: Laws of Exponents -- 2.7. Idempotent, Nilpotent, Involutory, Orthogonal And Unitary Matrices -- Chapter 3 Determinants -- 3.1 Definition -- 3.2 Minors and Cofactors -- 3.3 Properties of Determinants -- 3.4 Laplace's Expansions -- 3.5 Symmetric and Skew-Symmetric Determinant -- 3.6 Product of Two Determinants -- 3.7 Reciprocal Determinant -- Chapter 4 Adjoint and Inverse of a Matrix -- 4.1 Definition and Examples -- 4.2 Inverse of a Matrix -- 4.3 Linear Computations -- 4.4 Partitioning of Matrices -- Chapter 5 Rank and Equivalence -- 5.1 The Concept of a Rank -- 5.2 Elementary Transformations -- 5.3 Equivalent Matrices -- 5.4 Elementary Matrices -- 5.5 Normal Form -- 5.6 Elementary Transformation by Matrix Multiplication -- 5.7 Computation of The Inverse of Matrix by Elementary Transformation -- Chapter 6 Linear Equations -- 6.1 System of Linear Equations and Consistency -- 6.2 Solution of n Linear Equations In n Unknowns -- 6.3 Solution of m Linear Equations In n Unknowns With m < -- n and m > -- n -- 6.4 Homogeneous Linear Equations -- Chapter 7 Vector Spaces and Linear Transformations -- 7.1 Definition of a Vector and Vector Spaces -- 7.2 Vector Space Spanned by a Given System of Vectors -- 7.3 Linearly Dependent and Linearly Independent System of Vectors. | |
505 | 8 | _a7.4 Basis and Dimension -- 7.5 Subspace -- 7.6 Row and Column Space of a Matrix -- 7.7 Linear Transformations -- 7.8 Operators on Vnn -- 7.9 Geometric Transformation -- 7.10 Geometric Properties of Plane Linear Transformation -- 7.11 Rotation -- 7.12 Reflection -- 7.13 Expansions and Compressions -- 7.14 Shears -- 7.15 Translation -- 7.16 Successive Transformations -- 7.17 Inverse Transformation -- Chapter 8 Characteristic Roots and Vectors of a Matrix -- 8.1 Definition and Examples -- 8.2 Properties of The Characteristic Polynomial -- 8.3 Application of the Cayley-Hamilton Theorem In Finding Out The Inverse of a Non-Singular Matrix -- 8.4 The Minimum Polynomial of a Matrix -- 8.5 Characteristic Roots and Vectors of a Square Matrix -- 8.6 Characteristic Roots of Polynomial Function of a Matrix A -- 8.7 Characteristic Roots of Special Matrices -- 8.8 The Diagonal Form of a Hermitian Matrix -- Chapter 9 Bilinear Forms -- 9.1 Bilinear Forms -- 9.2 The Equivalence of Bilinear Forms -- 9.3 Types of Bilinear Forms -- 9.4 Cogredient Transformations -- 9.5 Contragredient Transformations -- Chapter 10 Quadratic Forms -- 10.1 Quadratic Forms -- 10.2 Linear Transformation -- 10.3 Reduction of Real Quadratic Form to Normal (or Canonical) Form -- 10.4 Lagrange's Reduction -- 10.5 Regular Quadratic Forms -- 10.6 Kronecker's Method of Reduction -- 10.7 Sylvester's Law of Inertia of Quadratic Forms -- 10.8 Definite, Semi-Definite and Indefinite Real Quadratic Forms -- 10.9 Definite Matrices -- 10.10 A Necessary and Sufficient Condition for Positive Definiteness -- Chapter 11 Hermitian Forms -- 11.1 Hermitian Forms -- 11.2 Definite Hermitian Form -- Chapter 12 Similar Matrices -- 12.1 Similar Matrices -- 12.2 Diagonal Matrices -- Answers to Problems -- Index. | |
588 | _aDescription based on publisher supplied metadata and other sources. | ||
590 | _aElectronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2024. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries. | ||
650 | 0 | _aMatrices. | |
655 | 4 | _aElectronic books. | |
700 | 1 | _aVatsa, Suchi. | |
776 | 0 | 8 |
_iPrint version: _aVatsa, B.S. _tTheory of Matrices _dTunbridge Wells : New Academic Science,c2012 _z9781906574901 |
797 | 2 | _aProQuest (Firm) | |
856 | 4 | 0 |
_uhttps://ebookcentral.proquest.com/lib/orpp/detail.action?docID=3440197 _zClick to View |
999 |
_c95219 _d95219 |