000 07787nam a22005053i 4500
001 EBC5724051
003 MiAaPQ
005 20240724113622.0
006 m o d |
007 cr cnu||||||||
008 240724s2019 xx o ||||0 eng d
020 _a9781119313601
_q(electronic bk.)
020 _z9781119313397
035 _a(MiAaPQ)EBC5724051
035 _a(Au-PeEL)EBL5724051
035 _a(CaPaEBR)ebr11657974
035 _a(OCoLC)1077483453
040 _aMiAaPQ
_beng
_erda
_epn
_cMiAaPQ
_dMiAaPQ
050 4 _aTA418.9.C6 .N684 2019
100 1 _aJiang, Xin.
245 1 0 _aNovel Carbon Materials and Composites :
_bSynthesis, Properties and Applications.
250 _a1st ed.
264 1 _aNewark :
_bJohn Wiley & Sons, Incorporated,
_c2019.
264 4 _c©2019.
300 _a1 online resource (303 pages)
336 _atext
_btxt
_2rdacontent
337 _acomputer
_bc
_2rdamedia
338 _aonline resource
_bcr
_2rdacarrier
490 1 _aNanocarbon Chemistry and Interfaces Series
505 0 _aCover -- Title Page -- Copyright -- Contents -- List of Contributors -- Series Preface -- Preface -- Chapter 1 Cubic Silicon Carbide: Growth, Properties, and Electrochemical Applications -- 1.1 General Overview of Silicon Carbide -- 1.1.1 SiC Properties -- 1.1.2 SiC Applications -- 1.1.3 Scope of this Chapter -- 1.2 Synthesis of Silicon Carbide -- 1.2.1 Acheson Process -- 1.2.2 Physical Vapor Transport -- 1.2.3 Chemical Vapor Deposition -- 1.3 Properties of Cubic Silicon Carbide -- 1.3.1 Surface Morphology -- 1.3.2 Electrochemical Properties -- 1.3.3 Surface Chemistry -- 1.3.3.1 Surface Terminations -- 1.3.3.2 Surface Functionalization -- 1.4 Electrochemical Applications of Cubic Silicon Carbide Films -- 1.4.1 Electrochemical Sensors -- 1.4.2 Biosensors -- 1.4.3 Energy Storage -- 1.4.4 Other Applications -- 1.5 Conclusions -- Acknowledgements -- References -- Chapter 2 Application of Silicon Carbide in Photocatalysis -- 2.1 Preparation of SiC with High Surface Area -- 2.1.1 Carbon Template Method -- 2.1.2 Sol‐gel Method -- 2.1.3 Polycarbosilane Pyrolysis Method -- 2.2 Photocatalytic Water‐Splitting -- 2.3 Photocatalytic Degradation of Pollutants -- 2.4 Photocatalytic Selective Organic Transformations -- 2.5 Photocatalytic CO2 Reduction -- References -- Chapter 3 Application of Silicon Carbide in Electrocatalysis -- 3.1 Electrochemical Sensors -- 3.2 Direct Methanol Fuel Cells -- 3.3 Dye‐sensitized Solar Cells -- 3.4 Lithium‐ion Batteries -- 3.5 Supercapacitors -- References -- Chapter 4 Carbon Nitride Fabrication and Its Water‐Splitting Applications -- 4.1 Introduction -- 4.2 Preparation of Pristine g‐C3N4 -- 4.2.1 Effect of Precursors -- 4.2.2 Effect of Reaction Parameters -- 4.3 Bandgap Engineering by Doping and Copolymerization -- 4.3.1 Doping of g‐C3N4 -- 4.3.1.1 C‐doping and N‐vacancy -- 4.3.1.2 S‐doping -- 4.3.1.3 P‐doping.
505 8 _a4.3.1.4 Metal doping -- 4.3.2 Copolymerization of g‐C3N4 -- 4.4 Nanostructure Engineering of g‐C3N4 -- 4.4.1 Ordered Mesoporous Nanostructures of g‐C3N4 -- 4.4.1.1 Hard Templating Methods -- 4.4.1.2 Soft Templating Methods -- 4.4.1.3 Template‐free Methods -- 4.4.2 Exfoliation to 2D Nanosheets of g‐C3N4 -- 4.4.3 0D Quantum Dots of g‐C3N4 -- 4.5 g‐C3N4 Composite Photocatalysts -- 4.5.1 Metal/g‐C3N4 Heterojunctions -- 4.5.2 Graphitic Carbon/g‐C3N4 Heterojunctions -- 4.5.3 Semiconductors/g‐C3N4 Heterojunctions -- 4.5.3.1 Type‐II Heterojunction -- 4.5.3.2 Z‐scheme -- 4.5.3.3 0D/2D Heterostructures -- 4.5.3.4 g‐C3N4 Homojunctions -- 4.5.3.5 Dyes Sensitization -- 4.5.4 Deposition of Earth‐Abundant Cocatalysts -- 4.6 Conclusions and Outlook -- References -- Chapter 5 Carbon Materials for Supercapacitors -- 5.1 Introduction -- 5.2 Affecting Factors -- 5.2.1 Specific Surface Area -- 5.2.2 Pore Size -- 5.2.3 Surface Functional Groups -- 5.2.4 Electrical Conductivity -- 5.3 Electrolyte -- 5.3.1 Aqueous Electrolyte -- 5.3.2 Organic Electrolyte -- 5.3.3 Ionic Liquid Electrolytes -- 5.4 Electrode Materials -- 5.4.1 Activated Carbons -- 5.4.2 Graphene -- 5.4.3 Carbon Nanotubes -- 5.4.4 Carbide‐Derived Carbon -- 5.4.5 Carbon Aerogels -- 5.5 Conclusion and Outlook -- References -- Chapter 6 Diamond/β‐SiC Composite Films -- 6.1 Introduction -- 6.2 Deposition Instruments -- 6.3 Conditions of the CVD Process -- 6.4 Film Quantity (Phase Distribution, Orientation, and Crystallinity) and Characterization -- 6.5 Growth Mechanism -- 6.6 Applications -- 6.6.1 Improvement of the Film Adhesion -- 6.6.2 Biosensor Applications -- 6.6.3 Preferential Protein Absorption -- 6.6.4 Diamond Networks -- 6.7 Conclusions and Future Aspects -- References -- Chapter 7 Diamond/Graphite Nanostructured Film: Synthesis, Properties, and Applications -- 7.1 Introduction.
505 8 _a7.2 Synthesis of the D/G Nanostructured Film -- 7.3 Growth Mechanism of the D/G Nanostructured Film -- 7.4 Properties and Applications of the D/G Nanostructured Film -- 7.4.1 Mechanical Properties -- 7.4.2 Electrochemical Properties -- 7.4.3 Hybrid D/G Film Electrode for the Detection of Trace Heavy Metal Ions -- 7.4.4 Hybrid D/G Film Electrochemical Biosensor for DNA Detection -- 7.5 Conclusions -- Acknowledgment -- References -- Chapter 8 Carbon Nanodot Composites: Fabrication, Properties, and Environmental and Energy Applications -- 8.1 Introduction -- 8.2 Synthesis, Structure, and Properties -- 8.2.1 Synthesis of C‐dots -- 8.2.2 Composition and Structure -- 8.2.3 Properties -- 8.2.3.1 Absorption -- 8.2.3.2 Photoluminescence -- 8.2.3.3 Photoinduced Electron Transfer Property -- 8.2.3.4 Electrochemiluminescence -- 8.2.3.5 Proton adsorption -- 8.2.3.6 Toxicity -- 8.3 C‐dot‐based Functional Nanocomposites -- 8.3.1 C‐dots in Mesoporous Structures -- 8.3.2 C‐dots in Polymers -- 8.3.3 C‐dots as Building Blocks for Mesoporous Structures -- 8.4 Catalysis Application -- 8.4.1 C‐dots as Photocatalysts -- 8.4.2 C‐dots as Electrocatalysts -- 8.4.3 Photocatalyst Design Based on C‐dots -- 8.4.3.1 Metal Nanoparticle/C‐dots Complex Photocatalyst -- 8.4.3.2 C‐dots/Ag/Ag3PW12O40 Photocatalysts -- 8.4.3.3 C‐dots/TiO2 Photocatalysts -- 8.4.3.4 CDs/Ag3PO4 Photocatalysts -- 8.4.3.5 CDs/Cu2O Photocatalysts -- 8.4.3.6 C‐dots/C3N4 Photocatalysts -- 8.4.3.7 C‐dots/Enzyme Photocatalysts -- 8.4.4 Photoelectrochemical Catalyst Design Based on C‐dots -- 8.4.5 Modulation of Electron/Energy Transfer States at the TiO2-C‐dots Interface -- 8.4.6 Electrocatalyst Design Based on C‐dots -- 8.4.7 Surface Modifications Towards Catalyst Design -- 8.5 C‐Dots for Sensing and Detection -- 8.5.1 PL Sensors -- 8.5.2 Electronic, Electrochemiluminescent and Electrochemical Sensors.
505 8 _a8.5.3 C‐dots for Humidity and Temperature Sensing -- 8.6 C‐dots for Solar Energy -- 8.7 Application in Supercapacitors and Lithium‐Ion Batteries -- 8.8 C‐Dots Nanocomposite for Efficient Lubrication -- 8.9 Outlook -- References -- Index -- EULA.
588 _aDescription based on publisher supplied metadata and other sources.
590 _aElectronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2024. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
650 0 _aCarbon composites.
655 4 _aElectronic books.
700 1 _aKang, Zhenhui.
700 1 _aGuo, Xiaoning.
700 1 _aZhuang, Hao.
776 0 8 _iPrint version:
_aJiang, Xin
_tNovel Carbon Materials and Composites
_dNewark : John Wiley & Sons, Incorporated,c2019
_z9781119313397
797 2 _aProQuest (Firm)
830 0 _aNanocarbon Chemistry and Interfaces Series
856 4 0 _uhttps://ebookcentral.proquest.com/lib/orpp/detail.action?docID=5724051
_zClick to View
999 _c9038
_d9038