000 04008nam a22004453i 4500
001 EBC3330417
003 MiAaPQ
005 20240729125050.0
006 m o d |
007 cr cnu||||||||
008 240724s1996 xx o ||||0 eng d
020 _a9780883859513
_q(electronic bk.)
020 _z9780883856390
035 _a(MiAaPQ)EBC3330417
035 _a(Au-PeEL)EBL3330417
035 _a(CaPaEBR)ebr10729388
035 _a(OCoLC)929120349
040 _aMiAaPQ
_beng
_erda
_epn
_cMiAaPQ
_dMiAaPQ
050 4 _aQA471.H66 1995eb
082 0 _a516.2
100 1 _aHonsberger, Ross.
245 1 0 _aEpisodes in Nineteenth and Twentieth Century Euclidean Geometry.
250 _a1st ed.
264 1 _aProvidence :
_bAmerican Mathematical Society,
_c1996.
264 4 _c©1995.
300 _a1 online resource (189 pages)
336 _atext
_btxt
_2rdacontent
337 _acomputer
_bc
_2rdamedia
338 _aonline resource
_bcr
_2rdacarrier
505 0 _aCover -- Title page -- copyright page -- 1. Cleavers and Splitters -- 2. The Orthocenter -- 3. On Triangles -- 4. On Quadrilaterals -- Exercise Set 4 -- 5. A Property of Triangles -- 1. The Property -- 2. The Simson Line -- 3. The Proof of the Property (John Rigby) -- 4. A Corollary -- 5. A Property of Parabolas -- 6. The Fuhrmann Circle -- 7. The Symmedian Point -- Section 1 -- 2. Isogonal Lines and Points -- Exercise -- 3. The Symmedians and the Symmedian Point K -- 4. Applications and Further Developments -- References -- Exercise Set 7 -- 8. The Miquel Theorem -- Section 1 -- 2. The Theorem of Miquel -- 3. The Case of P_1, P_2, P_3 Collinear -- 4. Simson Lines -- 5. A Curious Angle Property -- 9. The Tucker Circles -- 1. Parallels and antiparallels -- 2. The Lemoine circles -- 3. The Tucker circles -- 4. The center of a Tucker circle lies on the line KO -- 5. The first Lemoine circle -- 6. The Taylor Circle -- Exercise Set 9 -- 10. The Brocards Points -- 1. The Brocard Points -- 2. The Brocard Angle -- Exercise -- Exercise -- 3. The Brocard Circle -- 4. The Brocard triangles -- 5. The Steiner point and the Tarry point -- 6. A property relating K, G, Omega, Omega' -- 11. The Orthopole -- Section 1 -- Section 2 -- 3. The Rigby Point -- Exercise -- 12. On Cevians -- 1. Ceva's Theorem -- Section 2 -- Section 3 -- 4. Haruki's Cevian theorem for circles -- 13. The Theorem of Menelaus -- Section 1 -- 2. Applications -- Suggested Reading -- Solutions to the Exercises -- 1. Cleavers and Splitters -- 2. The Orthocenter -- 3. On Triangles -- 4. On Quadrilaterals -- 7. The Symmedian Point -- 9. The Tucker Circles -- 11. The Orthopole -- Index.
520 _aEuclidean geometry was worked out by Euclid and his predecessors more than 2300 years ago and is studied today mostly as a background to other branches of mathematics. In fact, however, as Professor Honsberger masterfully demonstrates, geometry in the style of Euclid is still alive and well.Mathematicians have again been studying the properties of geometric figures from a synthetic point of view and have discovered many new and unexpected results which Euclid himself never found. And since all of us have studied Euclidean geometry, at least the ancient version, this book is easily accessible. Exercises with their solutions are included in the book.
588 _aDescription based on publisher supplied metadata and other sources.
590 _aElectronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2024. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
650 0 _aGeometry, Projective.
650 0 _aGeometry.
655 4 _aElectronic books.
776 0 8 _iPrint version:
_aHonsberger, Ross
_tEpisodes in Nineteenth and Twentieth Century Euclidean Geometry
_dProvidence : American Mathematical Society,c1996
_z9780883856390
797 2 _aProQuest (Firm)
856 4 0 _uhttps://ebookcentral.proquest.com/lib/orpp/detail.action?docID=3330417
_zClick to View
999 _c79870
_d79870