000 | 04008nam a22004453i 4500 | ||
---|---|---|---|
001 | EBC3330417 | ||
003 | MiAaPQ | ||
005 | 20240729125050.0 | ||
006 | m o d | | ||
007 | cr cnu|||||||| | ||
008 | 240724s1996 xx o ||||0 eng d | ||
020 |
_a9780883859513 _q(electronic bk.) |
||
020 | _z9780883856390 | ||
035 | _a(MiAaPQ)EBC3330417 | ||
035 | _a(Au-PeEL)EBL3330417 | ||
035 | _a(CaPaEBR)ebr10729388 | ||
035 | _a(OCoLC)929120349 | ||
040 |
_aMiAaPQ _beng _erda _epn _cMiAaPQ _dMiAaPQ |
||
050 | 4 | _aQA471.H66 1995eb | |
082 | 0 | _a516.2 | |
100 | 1 | _aHonsberger, Ross. | |
245 | 1 | 0 | _aEpisodes in Nineteenth and Twentieth Century Euclidean Geometry. |
250 | _a1st ed. | ||
264 | 1 |
_aProvidence : _bAmerican Mathematical Society, _c1996. |
|
264 | 4 | _c©1995. | |
300 | _a1 online resource (189 pages) | ||
336 |
_atext _btxt _2rdacontent |
||
337 |
_acomputer _bc _2rdamedia |
||
338 |
_aonline resource _bcr _2rdacarrier |
||
505 | 0 | _aCover -- Title page -- copyright page -- 1. Cleavers and Splitters -- 2. The Orthocenter -- 3. On Triangles -- 4. On Quadrilaterals -- Exercise Set 4 -- 5. A Property of Triangles -- 1. The Property -- 2. The Simson Line -- 3. The Proof of the Property (John Rigby) -- 4. A Corollary -- 5. A Property of Parabolas -- 6. The Fuhrmann Circle -- 7. The Symmedian Point -- Section 1 -- 2. Isogonal Lines and Points -- Exercise -- 3. The Symmedians and the Symmedian Point K -- 4. Applications and Further Developments -- References -- Exercise Set 7 -- 8. The Miquel Theorem -- Section 1 -- 2. The Theorem of Miquel -- 3. The Case of P_1, P_2, P_3 Collinear -- 4. Simson Lines -- 5. A Curious Angle Property -- 9. The Tucker Circles -- 1. Parallels and antiparallels -- 2. The Lemoine circles -- 3. The Tucker circles -- 4. The center of a Tucker circle lies on the line KO -- 5. The first Lemoine circle -- 6. The Taylor Circle -- Exercise Set 9 -- 10. The Brocards Points -- 1. The Brocard Points -- 2. The Brocard Angle -- Exercise -- Exercise -- 3. The Brocard Circle -- 4. The Brocard triangles -- 5. The Steiner point and the Tarry point -- 6. A property relating K, G, Omega, Omega' -- 11. The Orthopole -- Section 1 -- Section 2 -- 3. The Rigby Point -- Exercise -- 12. On Cevians -- 1. Ceva's Theorem -- Section 2 -- Section 3 -- 4. Haruki's Cevian theorem for circles -- 13. The Theorem of Menelaus -- Section 1 -- 2. Applications -- Suggested Reading -- Solutions to the Exercises -- 1. Cleavers and Splitters -- 2. The Orthocenter -- 3. On Triangles -- 4. On Quadrilaterals -- 7. The Symmedian Point -- 9. The Tucker Circles -- 11. The Orthopole -- Index. | |
520 | _aEuclidean geometry was worked out by Euclid and his predecessors more than 2300 years ago and is studied today mostly as a background to other branches of mathematics. In fact, however, as Professor Honsberger masterfully demonstrates, geometry in the style of Euclid is still alive and well.Mathematicians have again been studying the properties of geometric figures from a synthetic point of view and have discovered many new and unexpected results which Euclid himself never found. And since all of us have studied Euclidean geometry, at least the ancient version, this book is easily accessible. Exercises with their solutions are included in the book. | ||
588 | _aDescription based on publisher supplied metadata and other sources. | ||
590 | _aElectronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2024. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries. | ||
650 | 0 | _aGeometry, Projective. | |
650 | 0 | _aGeometry. | |
655 | 4 | _aElectronic books. | |
776 | 0 | 8 |
_iPrint version: _aHonsberger, Ross _tEpisodes in Nineteenth and Twentieth Century Euclidean Geometry _dProvidence : American Mathematical Society,c1996 _z9780883856390 |
797 | 2 | _aProQuest (Firm) | |
856 | 4 | 0 |
_uhttps://ebookcentral.proquest.com/lib/orpp/detail.action?docID=3330417 _zClick to View |
999 |
_c79870 _d79870 |