000 | 03206nam a22004573i 4500 | ||
---|---|---|---|
001 | EBC3330382 | ||
003 | MiAaPQ | ||
005 | 20240729125049.0 | ||
006 | m o d | | ||
007 | cr cnu|||||||| | ||
008 | 240724s1967 xx o ||||0 eng d | ||
020 |
_a9780883859605 _q(electronic bk.) |
||
020 | _z9780883856208 | ||
035 | _a(MiAaPQ)EBC3330382 | ||
035 | _a(Au-PeEL)EBL3330382 | ||
035 | _a(CaPaEBR)ebr10729353 | ||
035 | _a(OCoLC)929120428 | ||
040 |
_aMiAaPQ _beng _erda _epn _cMiAaPQ _dMiAaPQ |
||
050 | 4 | _aQA241 -- .O74 1967eb | |
082 | 0 | _a512.7 | |
100 | 1 | _aOre, Oystein. | |
245 | 1 | 0 | _aInvitation to Number Theory. |
250 | _a1st ed. | ||
264 | 1 |
_aWashington : _bAmerican Mathematical Society, _c1967. |
|
264 | 4 | _c©1967. | |
300 | _a1 online resource (140 pages) | ||
336 |
_atext _btxt _2rdacontent |
||
337 |
_acomputer _bc _2rdamedia |
||
338 |
_aonline resource _bcr _2rdacarrier |
||
490 | 1 |
_aAnneli Lax New Mathematical Library ; _vv.20 |
|
505 | 0 | _aFront Cover -- Invitation to Number Theory -- Copyright Page -- Contents -- Chapter 1. Introduction -- 1.1 History -- 1.2 Numerology -- 1.3 The Pythagorean problem -- 1.4 Figurate numbers -- 1.5 Magic squares -- Chapter 2. Primes -- 2.1 Primes and composite numbers -- 2.2 Mersenne primes -- 2.3 Fermat primes -- 2.4 The sieve of Eratosthenes -- Chapter 3. Divisors of Numbers -- 3.1 Fundamental factorization theorem -- 3.2 Divisors -- 3.3 Problems concerning divisors -- 3.4 Perfect numbers -- 3.5 Amicable numbers -- Chapter 4. Greatest Common Divisor and Least Common Multiple -- 4.1 Greatest common divisor -- 4.2 Relatively prime numbers -- 4.3 Euclid's algorithm -- 4.4 Least common multiple -- Chapter 5. The Pythagorean Problem -- 5.1 Preliminaries -- 5.2 Solutions of the Pythagorean equation -- 5.3 Problems connected with Pythagorean triangles -- Chapter 6. Numeration Systems -- 6.1 Numbers for the millions -- 6.2 Other systems -- 6.3 Comparison of numeration systems -- 6.4 Some problems concerning numeration systems -- 6.5 Computers and their numeration systems -- 6.6 Games with digits -- Chapter 7. Congruences -- 7.1 Definition of congruence -- 7.2 Some properties of congruences -- 7.3 The algebra of congruences -- 7.4 Powers of congruences -- 7.5 Fermat's congruence -- Chapter 8. Some Applications of Congruences -- 8.1 Checks on computations -- 8.2 The days of the week -- 8.3 Tournament schedules -- 8.4 Prime or composite? -- Solutions to Selected Problems -- References -- Index. | |
588 | _aDescription based on publisher supplied metadata and other sources. | ||
590 | _aElectronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2024. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries. | ||
650 | 0 | _aNumber theory. | |
650 | 0 | _aAlgebra. | |
655 | 4 | _aElectronic books. | |
776 | 0 | 8 |
_iPrint version: _aOre, Oystein _tInvitation to Number Theory _dWashington : American Mathematical Society,c1967 _z9780883856208 |
797 | 2 | _aProQuest (Firm) | |
830 | 0 | _aAnneli Lax New Mathematical Library | |
856 | 4 | 0 |
_uhttps://ebookcentral.proquest.com/lib/orpp/detail.action?docID=3330382 _zClick to View |
999 |
_c79836 _d79836 |