000 07929nam a22004693i 4500
001 EBC3330355
003 MiAaPQ
005 20240729125049.0
006 m o d |
007 cr cnu||||||||
008 240724s2013 xx o ||||0 eng d
020 _a9781614441106
_q(electronic bk.)
020 _z9780883857816
035 _a(MiAaPQ)EBC3330355
035 _a(Au-PeEL)EBL3330355
035 _a(CaPaEBR)ebr10722466
035 _a(OCoLC)847680790
040 _aMiAaPQ
_beng
_erda
_epn
_cMiAaPQ
_dMiAaPQ
050 4 _aQA303.2.K59 2013eb
082 0 _a515
100 1 _aKlymchuk, Sergiy.
245 1 0 _aClassroom Resource Materials :
_bParadoxes and Sophisms in Calculus.
250 _a1st ed.
264 1 _aProvidence :
_bAmerican Mathematical Society,
_c2013.
264 4 _c©2013.
300 _a1 online resource (113 pages)
336 _atext
_btxt
_2rdacontent
337 _acomputer
_bc
_2rdamedia
338 _aonline resource
_bcr
_2rdacarrier
505 0 _acover -- copyright page -- title page -- Contents -- Introduction -- Acknowledgments -- I Paradoxes -- Functions and Limits -- Laying bricks -- Spiral curves -- A paradoxical fractal curve: the Koch snowflake -- A tricky fractal area: the Sierpinski carpet -- A mysterious fractal set: the Cantor ternary set -- A misleading sequence -- Remarkable symmetry -- Rolling a barrel -- A cat on a ladder -- Sailing -- Encircling the Earth -- A tricky equation -- A snail on a rubber rope -- Derivatives and Integrals -- An alternative product rule -- Missing information? -- A paint shortage -- Racing marbles -- A paradoxical pair of functions -- An unruly function -- Jagged peaks galore -- Another paradoxical pair of functions -- II Sophisms -- Functions and Limits -- Evaluation of lim_n _k=1n1n2+k proves that 1=0. -- Evaluation of lim_x0 (xsin1x ) proves that 1 = 0. -- Evaluation of lim_x0+ (xx) shows that 1 = 0. -- Evaluation of lim_n [n]n demonstrates that 1=. -- Trigonometric limits prove that sinkx = k sinx. -- Evaluation of a limit of a sum proves that 1=0. -- Analysis of the function x+yx-y proves that 1 = -1. -- Analysis of the function ax+yx+ay proves that a = 1a, for any value a 0. -- One-to-one correspondences imply that 1 = 2. -- Aristotle's wheel implies that R = r. -- Logarithmic inequalities show 2 &gt -- 3. -- Analysis of the logarithm function implies 2 &gt -- 3. -- Analysis of the logarithm function proves 14 &gt -- 12. -- Limit of perimeter curves shows that 2 = 1. -- Limit of perimeter curves shows = 2. -- Serret's surface area definition proves that = . -- Achilles and the tortoise -- Reasonable estimations lead to 1,000,000 2,000,000. -- Properties of square roots prove 1 = -1. -- Analysis of square roots shows that 2=-2. -- Properties of exponents show that 3 = -3. -- A slant asymptote proves that 2 = 1.
505 8 _aEuler's interpretation of series shows 12 = 1-1+1-1+@let@token . -- Euler's manipulation of series proves -1&gt -- &gt -- 1. -- A continuous function with a jump discontinuity -- Evaluation of Taylor series proves ln2=0. -- Derivatives and Integrals -- Trigonometric integration shows 1 = C, for any real number C. -- Integration by parts demonstrates 1 = 0. -- Division by zero is possible. -- Integration proves sin2 x = 1 for any value of x. -- The u-substitution method shows that 2 &lt -- 0 &lt -- . -- ln2 is not defined. -- is not defined. -- Properties of indefinite integrals show 0=C, for any real number C. -- Volumes of solids of revolution demonstrate that 1 = 2. -- An infinitely fast fall -- A positive number equals a negative number. -- The power rule for differentiation proves that 2=1. -- III Solutions to Paradoxes -- Functions and Limits -- Laying bricks -- Spiral curves -- A paradoxical fractal curve: the Koch snowflake. -- A tricky fractal area: the Sierpinski carpet -- A mysterious fractal set: the Cantor ternary set -- A misleading sequence -- Remarkable symmetry: Reuleaux polygons -- Rolling a barrel -- A cat on a ladder -- Sailing -- Encircling the Earth -- A tricky equation -- A snail on a rubber rope -- Derivatives and Integrals -- An alternative product rule -- Missing information? -- A paint shortage -- Racing marbles -- A paradoxical pair of functions -- An unruly function -- Jagged peaks galore -- Another paradoxical pair of functions -- IV Solutions to Sophisms -- Functions and Limits -- Evaluation of lim_n n_k=1 1n2+k proves that 1 = 0. -- Evaluation of lim_x 0 ( xsin1x ) proves that 1 = 0. -- Evaluation of lim_x 0+ (xx) shows that 1 = 0. -- Evaluation of lim_n [n]n demonstrates that 1 = . -- Trigonometric limits prove that sinkx = ksinx. -- Evaluation of a limit of a sum proves that 1 = 0.
505 8 _aAnalysis of the function x + yx - y proves that 1 = -1. -- Analysis of the function ax + yx + ay proves that a = 1a, for any value a 0. -- One-to-one correspondences imply that 1 = 2. -- Aristotle's wheel implies that R = r. -- Logarithmic inequalities show 2 &gt -- 3. -- Analysis of the logarithm function implies 2 &gt -- 3. -- Analysis of the logarithm function proves 14 &gt -- 12. -- Limit of perimeter curves shows that 2 = 1. -- Limit of perimeter curves shows = 2. -- Serret's surface area definition proves that = . -- Achilles and the tortoise -- Reasonable estimations lead to 1,000,000 2,000,000. -- Properties of square roots prove 1 = -1. -- Analysis of square roots shows that 2 = -2. -- Properties of exponents show that 3=-3. -- A slant asymptote proves that 2=1. -- Euler's interpretation of series shows 12 = 1-1+1-1+@let@token . -- Euler's manipulation of series proves -1&gt -- &gt -- 1. -- A continuous function with a jump discontinuity. -- Evaluation of Taylor series proves ln2=0. -- Derivatives and Integrals -- Trigonometric Integration shows 1 = C, for any real number C. -- Integration by parts demonstrates 1 = 0. -- Division by zero is possible. -- Integration proves sin2 x = 1 for any value of x. -- The u-substitution method shows that 2 &lt -- 0 &lt -- . -- ln2 is not defined. -- is not defined. -- Properties of indefinite integrals show 0 = C, for any real number C. -- Volumes of solids of revolution demonstrate that 1 = 2. -- An infinitely fast fall -- A positive number equals a negative number. -- The power rule for differentiation proves that 2=1. -- Bibliography -- About the Authors.
520 _aParadoxes and Sophisms in Calculus offers a delightful supplementary resource to enhance the study of single variable calculus. By the word paradox the authors mean a surprising, unexpected, counter-intuitive statement that looks invalid, but in fact is true. The word sophism describes intentionally invalid reasoning that looks formally correct, but in fact contains a subtle mistake or flaw. In other words, a sophism is a false proof of an incorrect statement. A collection of over fifty paradoxes and sophisms showcases the subtleties of this subject and leads students to contemplate the underlying concepts. A number of the examples treat historically significant issues that arose in the development of calculus, while others more naturally challenge readers to understand common misconceptions. Sophisms and paradoxes from the areas of functions, limits, derivatives, integrals, sequences, and series are explored.
588 _aDescription based on publisher supplied metadata and other sources.
590 _aElectronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2024. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
650 0 _aCalculus.
655 4 _aElectronic books.
700 1 _aStaples, Susan.
776 0 8 _iPrint version:
_aKlymchuk, Sergiy
_tClassroom Resource Materials
_dProvidence : American Mathematical Society,c2013
_z9780883857816
797 2 _aProQuest (Firm)
856 4 0 _uhttps://ebookcentral.proquest.com/lib/orpp/detail.action?docID=3330355
_zClick to View
999 _c79811
_d79811