000 03863nam a22005053i 4500
001 EBC3114572
003 MiAaPQ
005 20240729124612.0
006 m o d |
007 cr cnu||||||||
008 240724s2003 xx o ||||0 eng d
020 _a9781470403713
_q(electronic bk.)
020 _z9780821832882
035 _a(MiAaPQ)EBC3114572
035 _a(Au-PeEL)EBL3114572
035 _a(CaPaEBR)ebr11041350
035 _a(OCoLC)922964942
040 _aMiAaPQ
_beng
_erda
_epn
_cMiAaPQ
_dMiAaPQ
050 4 _aQA247 -- .G87 2003eb
082 0 _a512/.3
100 1 _aGuralnick, Robert M.
245 1 0 _aRational Function Analogue of a Question of Schur and Exceptionality of Permutation Representations.
250 _a1st ed.
264 1 _aProvidence :
_bAmerican Mathematical Society,
_c2003.
264 4 _c©2003.
300 _a1 online resource (96 pages)
336 _atext
_btxt
_2rdacontent
337 _acomputer
_bc
_2rdamedia
338 _aonline resource
_bcr
_2rdacarrier
490 1 _aMemoirs of the American Mathematical Society ;
_vv.162
505 0 _aIntro -- Contents -- Chapter 1. Introduction -- Chapter 2. Arithmetic-Geometric Preparation -- 2.1. Arithmetic and geometric monodromy groups -- 2.2. Distinguished conjugacy classes of inertia generators -- 2.3. Branch cycle descriptions -- 2.4. The branch cycle argument -- 2.5. Weak rigidity -- 2.6. Topological interpretation -- 2.7. Group theoretic translation of arithmetic exceptionality -- 2.8. Remark about exceptional functions over finite fields -- Chapter 3. Group Theoretic Exceptionality -- 3.1. Notation and definitions -- 3.2. Primitive groups -- 3.3. General results on exceptionality -- 3.4. Examples of exceptionality -- 3.5. Nonabelian regular normal subgroups -- 3.6. Product action -- 3.7. Diagonal action -- 3.8. Almost simple groups -- Chapter 4. Genus 0 Condition -- 4.1. Genus 0 systems in finite permutation groups -- 4.2. Diagonal action -- 4.3. Product action -- 4.4. Almost simple groups -- 4.5. Affine action -- Chapter 5. Dickson Polynomials and Rédei Functions -- Chapter 6. Rational Functions with Euclidean Signature -- 6.1. Elliptic Curves -- 6.2. Non-existence results -- 6.3. Existence results -- Chapter 7. Sporadic Cases of Arithmetic Exceptionality -- 7.1. G = C[sub(2)] x C[sub(2)] (Theorem 4.13(a)(iii)) -- 7.2. G = (C[sup(2)][sub(11)]) x GL[sub(2)(3) (Theorem 4.13(c)(1)) -- 7.3. G = (C[sup(2)][sub(11)]) x S[sub(3)] (Theorem 4.13(c)(ii)) -- 7.4. G = (C[sup(2)][sub(5)]) x ((C[sub(4)] x C[sub(2)]) x C[sub(2)]) (Theorem 4.13(c)(iii)) -- 7.5. G = (C[sup(2)][sub(5)]) x D[sub(12)] (Theorem 4.13(c)(iv)) -- 7.6. G = (C[sup(2)][sub(3)]) x D[sub(8)] (Theorem 4.13(c)(v)) -- 7.7. G = (C[sup(4)][sub(2)]) x (C[sup(5)] x C[sub(2)]) (Theorem 4.13(c)(vi)) -- 7.8. G = PSL[sub(2)](8) (Theorem 4.10(a)) -- 7.9. G = PSL[sub(2)](9) (Theorem 4.10(b)) -- 7.10. A remark about one of the sporadic cases -- Bibliography.
588 _aDescription based on publisher supplied metadata and other sources.
590 _aElectronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2024. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
650 0 _aAlgebraic fields.
650 0 _aArithmetic functions.
650 0 _aPermutation groups.
650 0 _aPolynomials.
655 4 _aElectronic books.
700 1 _aMüller, Peter.
700 1 _aSaxl, Jan.
776 0 8 _iPrint version:
_aGuralnick, Robert M.
_tRational Function Analogue of a Question of Schur and Exceptionality of Permutation Representations
_dProvidence : American Mathematical Society,c2003
_z9780821832882
797 2 _aProQuest (Firm)
830 0 _aMemoirs of the American Mathematical Society
856 4 0 _uhttps://ebookcentral.proquest.com/lib/orpp/detail.action?docID=3114572
_zClick to View
999 _c70067
_d70067