000 04830nam a22005053i 4500
001 EBC3114567
003 MiAaPQ
005 20240729124612.0
006 m o d |
007 cr cnu||||||||
008 240724s1998 xx o ||||0 eng d
020 _a9781470402105
_q(electronic bk.)
020 _z9780821808368
035 _a(MiAaPQ)EBC3114567
035 _a(Au-PeEL)EBL3114567
035 _a(CaPaEBR)ebr11041345
035 _a(OCoLC)922965067
040 _aMiAaPQ
_beng
_erda
_epn
_cMiAaPQ
_dMiAaPQ
050 4 _aQA166.15 -- .C44 1998eb
082 0 _a510 s;511/.5
100 1 _aCherlin, Gregory L.
245 1 0 _aClassification of Countable Homogeneous Directed Graphs and Countable Homogeneous n-tournaments.
250 _a1st ed.
264 1 _aProvidence :
_bAmerican Mathematical Society,
_c1998.
264 4 _c©1998.
300 _a1 online resource (183 pages)
336 _atext
_btxt
_2rdacontent
337 _acomputer
_bc
_2rdamedia
338 _aonline resource
_bcr
_2rdacarrier
490 1 _aMemoirs of the American Mathematical Society ;
_vv.131
505 0 _aIntro -- Contents -- Introduction -- Chapter 1. Results and Open Problems -- 1.1. Homogeneous structures -- 1.2. A survey of work on homogeneous structures -- 1.3. Amalgamation classes -- 1.4. Languages, strong amalgamation, generincation, and Ramsey's theorem -- 1.5. Classification theorems -- 1.6. Open problems -- Chapter 2. Homogeneous 2-tournaments -- 2.1. A catalog -- 2.2. Restricted homogeneous 2-tournaments -- 2.3. Sources and sinks -- 2.4. Constrained 2-tournaments -- 2.5. Unconstrained 2-tournaments -- Chapter 3. Homogeneous n-tournaments -- 3.1. Introduction -- 3.2. Hypercritical and small 3-tournaments -- 3.3. The critical case -- 3.4. Two embedding lemmas -- 3.5. Polarized n-tournaments -- 3.6. Embedding polarized 3-tournaments -- 3.7. Some special cases -- 3.8. The general case -- Chapter 4. Homogeneous symmetric graphs -- 4.1. The theorem of Lachlan and Woodrow -- 4.2. The main ingredients -- 4.3. Structure of the proof -- 4.4. Steps 7, 5, 8. Proof of the Main Theorems -- 4.5. Step 1, Proposition 10: adding K(2) -- 4.6. Step 1, Proposition 11: the operation H[sup(+)] -- 4.7. Step 1, Propositions 12 and 13: realization of 1-types -- 4.8. Step 2. Theorem 4.8: a, b, K -- 4.9. Step 6. Theorem 4.9.n: extending direct sums -- 4.10. Step 3. Theorem 4.6 -- 4.11. Step 4. Theorem 4.7 -- Chapter 5. Homogeneous directed graphs omitting I[sub(∞)] -- 5.1. A catalog of homogeneous directed graphs -- 5.2. The graph P(3) -- 5.3. The theorem -- 5.4. The major steps in the proof -- 5.5. Proof of the Main Theorem, Part 1 -- 5.6. Proof of the Main Theorem, part 2, n &gt -- 2 -- 5.7. Case 2.1 of the Main Theorem -- 5.8. Propositions 14 and 15 -- Chapter 6. Propositions 16 to 20 and MT 2.2 -- 6.1. Proposition 16: simple configurations -- 6.2. Proposition 17: induction on n -- 6.3. Proposition 18: extending I[sub(n)] -- 6.4. Proposition 19: ([sup(p)]y,y').
505 8 _a6.5. Proposition 20: ([sup(p)]y,y[sup(⊥)]) -- 6.6. Toward MT 2.2 -- 6.7. Lemma 6.3 -- 6.8. Lemma 6.4 -- 6.9. Lemma 6.5 -- 6.10. Lemma 6.6 -- Chapter 7. Homogeneous directed graphs embedding I[sub(∞)] -- 7.1. The classification theorem -- 7.2. The main ingredients -- 7.3. Structure of the proof -- 7.4. Steps 4, 6, 7. The Main Theorem -- 7.5. Step 1. Proposition 24: P[sub(3)] -- 7.6. Step 1, Proposition 25: adding L(2) -- 7.7. Step 1, Proposition 26: the operations ± -- 7.8. Step 1, Propositions 27 and 28: some 1-types -- Chapter 8. Theorems 7.6-7.9 -- 8.1. Step 2. Theorems 7.6 and 7.7 -- 8.2. Step 5. Theorem 7.9.T: extending a direct sum -- 8.3. Step 3. Theorem 7.8, 1-types over sums -- 8.4. Theorem 7.8, conclusion -- Appendix: Examples for richer languages -- Bibliography -- Index of Notation -- Index -- A -- B -- C -- D -- E -- F -- G -- H -- I -- J -- K -- L -- M -- N -- O -- P -- Q -- R -- S -- T -- U -- V -- W -- Z.
588 _aDescription based on publisher supplied metadata and other sources.
590 _aElectronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2024. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
650 0 _aDirected graphs.
650 0 _aTournaments (Graph theory).
650 0 _aModel theory.
650 0 _aRamsey theory.
650 0 _aPermutation groups.
655 4 _aElectronic books.
776 0 8 _iPrint version:
_aCherlin, Gregory L.
_tClassification of Countable Homogeneous Directed Graphs and Countable Homogeneous n-tournaments
_dProvidence : American Mathematical Society,c1998
_z9780821808368
797 2 _aProQuest (Firm)
830 0 _aMemoirs of the American Mathematical Society
856 4 0 _uhttps://ebookcentral.proquest.com/lib/orpp/detail.action?docID=3114567
_zClick to View
999 _c70062
_d70062