000 04013nam a22005173i 4500
001 EBC3114563
003 MiAaPQ
005 20240729124612.0
006 m o d |
007 cr cnu||||||||
008 240724s2012 xx o ||||0 eng d
020 _a9780821887561
_q(electronic bk.)
020 _z9780821869284
035 _a(MiAaPQ)EBC3114563
035 _a(Au-PeEL)EBL3114563
035 _a(CaPaEBR)ebr11041341
035 _a(OCoLC)922964970
040 _aMiAaPQ
_beng
_erda
_epn
_cMiAaPQ
_dMiAaPQ
050 4 _aQA379 -- .D858 2011eb
082 0 _a512.7/4
100 1 _aDuits, Maurice.
245 1 0 _aHermitian Two Matrix Model with an Even Quartic Potential.
250 _a1st ed.
264 1 _aProvidence :
_bAmerican Mathematical Society,
_c2012.
264 4 _c©2011.
300 _a1 online resource (118 pages)
336 _atext
_btxt
_2rdacontent
337 _acomputer
_bc
_2rdamedia
338 _aonline resource
_bcr
_2rdacarrier
490 1 _aMemoirs of the American Mathematical Society ;
_vv.217
505 0 _aIntro -- Contents -- Abstract -- Chapter 1. Introduction and Statement of Results -- 1.1. Hermitian two matrix model -- 1.2. Background -- 1.3. Vector equilibrium problem -- 1.4. Solution of vector equilibrium problem -- 1.5. Classification into cases -- 1.6. Limiting mean eigenvalue distribution -- 1.7. About the proof of Theorem 1.4 -- 1.8. Singular cases -- Chapter 2. Preliminaries and the Proof of Lemma 1.2 -- 2.1. Saddle point equation and functions sj -- 2.2. Values at the saddles and functions j -- 2.3. Large z asymptotics -- 2.4. Two special integrals -- 2.5. Proof of Lemma 1.2 -- Chapter 3. Proof of Theorem 1.1 -- 3.1. Results from potential theory -- 3.2. Equilibrium problem for 3 -- 3.3. Equilibrium problem for 1 -- 3.4. Equilibrium problem for 2 -- 3.5. Uniqueness of the minimizer -- 3.6. Existence of the minimizer -- 3.7. Proof of Theorem 1.1 -- Chapter 4. A Riemann Surface -- 4.1. The g-functions -- 4.2. Riemann surface R and -functions -- 4.3. Properties of the functions -- 4.4. The functions -- Chapter 5. Pearcey Integrals and the First Transformation -- 5.1. Definitions -- 5.2. Large z asymptotics -- 5.3. First transformation: Y X -- 5.4. RH problem for X -- Chapter 6. Second Transformation X U -- 6.1. Definition of second transformation -- 6.2. Asymptotic behavior of U -- 6.3. Jump matrices for U -- 6.4. RH problem for U -- Chapter 7. Opening of Lenses -- 7.1. Third transformation U T -- 7.2. RH problem for T -- 7.3. Jump matrices for T -- 7.4. Fourth transformation T S -- 7.5. RH problem for S -- 7.6. Behavior of jumps as n -- Chapter 8. Global Parametrix -- 8.1. Statement of RH problem -- 8.2. Riemann surface as an M-curve -- 8.3. Canonical homology basis -- 8.4. Meromorphic differentials -- 8.5. Definition and properties of functions uj -- 8.6. Definition and properties of functions vj -- 8.7. The first row of M.
505 8 _a8.8. The other rows of M -- Chapter 9. Local Parametrices and Final Transformation -- 9.1. Local parametrices -- 9.2. Final transformation -- 9.3. Proof of Theorem 1.4 -- Bibliography -- Index.
588 _aDescription based on publisher supplied metadata and other sources.
590 _aElectronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2024. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
650 0 _aBoundary value problems.
650 0 _aHermitian structures.
650 0 _aEigenvalues.
650 0 _aRandom matrices.
655 4 _aElectronic books.
700 1 _aKuijlaars, Arno B.J.
700 1 _aMo, Man Yue.
776 0 8 _iPrint version:
_aDuits, Maurice
_tHermitian Two Matrix Model with an Even Quartic Potential
_dProvidence : American Mathematical Society,c2012
_z9780821869284
797 2 _aProQuest (Firm)
830 0 _aMemoirs of the American Mathematical Society
856 4 0 _uhttps://ebookcentral.proquest.com/lib/orpp/detail.action?docID=3114563
_zClick to View
999 _c70058
_d70058