000 | 04013nam a22005173i 4500 | ||
---|---|---|---|
001 | EBC3114563 | ||
003 | MiAaPQ | ||
005 | 20240729124612.0 | ||
006 | m o d | | ||
007 | cr cnu|||||||| | ||
008 | 240724s2012 xx o ||||0 eng d | ||
020 |
_a9780821887561 _q(electronic bk.) |
||
020 | _z9780821869284 | ||
035 | _a(MiAaPQ)EBC3114563 | ||
035 | _a(Au-PeEL)EBL3114563 | ||
035 | _a(CaPaEBR)ebr11041341 | ||
035 | _a(OCoLC)922964970 | ||
040 |
_aMiAaPQ _beng _erda _epn _cMiAaPQ _dMiAaPQ |
||
050 | 4 | _aQA379 -- .D858 2011eb | |
082 | 0 | _a512.7/4 | |
100 | 1 | _aDuits, Maurice. | |
245 | 1 | 0 | _aHermitian Two Matrix Model with an Even Quartic Potential. |
250 | _a1st ed. | ||
264 | 1 |
_aProvidence : _bAmerican Mathematical Society, _c2012. |
|
264 | 4 | _c©2011. | |
300 | _a1 online resource (118 pages) | ||
336 |
_atext _btxt _2rdacontent |
||
337 |
_acomputer _bc _2rdamedia |
||
338 |
_aonline resource _bcr _2rdacarrier |
||
490 | 1 |
_aMemoirs of the American Mathematical Society ; _vv.217 |
|
505 | 0 | _aIntro -- Contents -- Abstract -- Chapter 1. Introduction and Statement of Results -- 1.1. Hermitian two matrix model -- 1.2. Background -- 1.3. Vector equilibrium problem -- 1.4. Solution of vector equilibrium problem -- 1.5. Classification into cases -- 1.6. Limiting mean eigenvalue distribution -- 1.7. About the proof of Theorem 1.4 -- 1.8. Singular cases -- Chapter 2. Preliminaries and the Proof of Lemma 1.2 -- 2.1. Saddle point equation and functions sj -- 2.2. Values at the saddles and functions j -- 2.3. Large z asymptotics -- 2.4. Two special integrals -- 2.5. Proof of Lemma 1.2 -- Chapter 3. Proof of Theorem 1.1 -- 3.1. Results from potential theory -- 3.2. Equilibrium problem for 3 -- 3.3. Equilibrium problem for 1 -- 3.4. Equilibrium problem for 2 -- 3.5. Uniqueness of the minimizer -- 3.6. Existence of the minimizer -- 3.7. Proof of Theorem 1.1 -- Chapter 4. A Riemann Surface -- 4.1. The g-functions -- 4.2. Riemann surface R and -functions -- 4.3. Properties of the functions -- 4.4. The functions -- Chapter 5. Pearcey Integrals and the First Transformation -- 5.1. Definitions -- 5.2. Large z asymptotics -- 5.3. First transformation: Y X -- 5.4. RH problem for X -- Chapter 6. Second Transformation X U -- 6.1. Definition of second transformation -- 6.2. Asymptotic behavior of U -- 6.3. Jump matrices for U -- 6.4. RH problem for U -- Chapter 7. Opening of Lenses -- 7.1. Third transformation U T -- 7.2. RH problem for T -- 7.3. Jump matrices for T -- 7.4. Fourth transformation T S -- 7.5. RH problem for S -- 7.6. Behavior of jumps as n -- Chapter 8. Global Parametrix -- 8.1. Statement of RH problem -- 8.2. Riemann surface as an M-curve -- 8.3. Canonical homology basis -- 8.4. Meromorphic differentials -- 8.5. Definition and properties of functions uj -- 8.6. Definition and properties of functions vj -- 8.7. The first row of M. | |
505 | 8 | _a8.8. The other rows of M -- Chapter 9. Local Parametrices and Final Transformation -- 9.1. Local parametrices -- 9.2. Final transformation -- 9.3. Proof of Theorem 1.4 -- Bibliography -- Index. | |
588 | _aDescription based on publisher supplied metadata and other sources. | ||
590 | _aElectronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2024. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries. | ||
650 | 0 | _aBoundary value problems. | |
650 | 0 | _aHermitian structures. | |
650 | 0 | _aEigenvalues. | |
650 | 0 | _aRandom matrices. | |
655 | 4 | _aElectronic books. | |
700 | 1 | _aKuijlaars, Arno B.J. | |
700 | 1 | _aMo, Man Yue. | |
776 | 0 | 8 |
_iPrint version: _aDuits, Maurice _tHermitian Two Matrix Model with an Even Quartic Potential _dProvidence : American Mathematical Society,c2012 _z9780821869284 |
797 | 2 | _aProQuest (Firm) | |
830 | 0 | _aMemoirs of the American Mathematical Society | |
856 | 4 | 0 |
_uhttps://ebookcentral.proquest.com/lib/orpp/detail.action?docID=3114563 _zClick to View |
999 |
_c70058 _d70058 |