000 03491nam a22004573i 4500
001 EBC3114535
003 MiAaPQ
005 20240729124611.0
006 m o d |
007 cr cnu||||||||
008 240724s1999 xx o ||||0 eng d
020 _a9781470402716
_q(electronic bk.)
020 _z9780821815458
035 _a(MiAaPQ)EBC3114535
035 _a(Au-PeEL)EBL3114535
035 _a(CaPaEBR)ebr11041313
035 _a(OCoLC)922964946
040 _aMiAaPQ
_beng
_erda
_epn
_cMiAaPQ
_dMiAaPQ
050 4 _aQA326 -- .Z33 2000eb
082 0 _a510 s;512/.55
100 1 _aZacharias, Joachim.
245 1 0 _aContinuous Tensor Products and Arveson’s Spectral C^{*}-Algebras.
250 _a1st ed.
264 1 _aProvidence :
_bAmerican Mathematical Society,
_c1999.
264 4 _c©2000.
300 _a1 online resource (135 pages)
336 _atext
_btxt
_2rdacontent
337 _acomputer
_bc
_2rdamedia
338 _aonline resource
_bcr
_2rdacarrier
490 1 _aMemoirs of the American Mathematical Society ;
_vv.143
505 0 _aIntro -- Contents -- 1 Introduction -- 2 Continuous Tensor Products -- 2.1 Tensor Decompositions over Boolean Algebras -- 2.1.1 Definition -- 2.1.2 Continuous Tensor Decompositions -- 2.1.3 Discrete Examples -- 2.1.4 Continuous Examples -- 2.2 The Generalized Araki-Woods Theorem -- 2.2.1 An Araki-Woods Theorem for B[sub(0)](I) -- 3 Algebras Associated to Continuous Tensor Products -- 3.1 Definition of L[sup(1)](T) and A(T) -- 3.1.1 L[sup(1)]-Sections as Involutive Banach Algebras -- 3.2 The C*-Algebra A{T) for T of Type I -- 3.2.1 Representations of A(T) -- 3.2.2 States -- 3.2.3 Ideals and Exact Sequences -- 3.3 Automorphisms and Endomorphisms -- 3.3.1 Ideal Preserving Automorphisms -- 3.3.2 General Diagonal Morphisms -- 3.3.3 Generation by Cones -- 3.3.4 Pedersen Ideal and Infiniteness -- 3.3.5 The Canonical Automorphic and Endomorphic Actions on A[sub(n)] -- 3.4 Homotopy Invariants -- 3.4.1 K-Theory -- 3.4.2 The Homotopy Type of the Automorphism Group -- 4 Arveson's Spectral C*-Algebras -- 4.1 Product Systems -- 4.1.1 E[sub(0)]-Semigroups and Product Systems -- 4.2 The Spectral C*-Algebra C*(E) of a Product System -- 4.2.1 The Wiener Hopf C*-Algebra -- 4.2.2 The Involutive Banach Algebra L[sup(1)] (K[sub(E)]) -- 4.2.3 C*(E) and its Universal Property -- 4.2.4 The C*-Algebras W[sub(n)] -- 4.3 C*(E[sub(n)]) as a Crossed Product -- 4.3.1 The Banach Algebra Crossed Product L[sup(1)] (R, L[sup(1)](T[sub(n)])) -- 4.3.2 Morita Equivalence between R [omitted] A[sub(n)] and C*(E[sub(n)]) -- 4.3.3 Simplicity -- 4.3.4 Infiniteness -- Appendix -- A. Bochner Integrals -- B. Direct Integrals -- C. Conditionally Positive Definite Functions -- References.
588 _aDescription based on publisher supplied metadata and other sources.
590 _aElectronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2024. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
650 0 _aC*-algebras.
650 0 _aTensor products.
655 4 _aElectronic books.
776 0 8 _iPrint version:
_aZacharias, Joachim
_tContinuous Tensor Products and Arveson’s Spectral C^{*}-Algebras
_dProvidence : American Mathematical Society,c1999
_z9780821815458
797 2 _aProQuest (Firm)
830 0 _aMemoirs of the American Mathematical Society
856 4 0 _uhttps://ebookcentral.proquest.com/lib/orpp/detail.action?docID=3114535
_zClick to View
999 _c70030
_d70030