000 03800nam a22004573i 4500
001 EBC3114530
003 MiAaPQ
005 20240729124611.0
006 m o d |
007 cr cnu||||||||
008 240724s2013 xx o ||||0 eng d
020 _a9780821898727
_q(electronic bk.)
020 _z9780821853665
035 _a(MiAaPQ)EBC3114530
035 _a(Au-PeEL)EBL3114530
035 _a(CaPaEBR)ebr11041308
035 _a(OCoLC)922965014
040 _aMiAaPQ
_beng
_erda
_epn
_cMiAaPQ
_dMiAaPQ
050 4 _aQA613.2 -- .N346 2011eb
082 0 _a514/.34
100 1 _aNagórko, Andrzej.
245 1 0 _aCharacterization and Topological Rigidity of Nöbeling Manifolds.
250 _a1st ed.
264 1 _aProvidence :
_bAmerican Mathematical Society,
_c2013.
264 4 _c©2013.
300 _a1 online resource (106 pages)
336 _atext
_btxt
_2rdacontent
337 _acomputer
_bc
_2rdamedia
338 _aonline resource
_bcr
_2rdacarrier
490 1 _aMemoirs of the American Mathematical Society ;
_vv.223
505 0 _aIntro -- Contents -- Abstract -- Part 1 . Introduction and preliminaries -- Chapter 1. Introduction -- Chapter 2. Preliminaries -- 2.1. Covers and interior covers -- 2.2. Absolute extensors -- 2.3. Nerves of covers and barycentric stars -- 2.4. Strong universality -- 2.5. -Homotopy equivalence -- 2.6. -sets -- Part 2 . Reducing the proof of the main results to the construction of -regular and -semiregular \ { }-covers -- Chapter 3. Approximation within an _{ }-cover -- 3.1. (ℱ)-sets -- 3.2. Approximation within a cover -- 3.3. -collections\footnote{we shall not use the theorem proved in ths section until the third part of the paper.} -- Chapter 4. Constructing closed _{ }-covers -- 4.1. Adjustment of a collection -- 4.2. Limits of sequences of adjustments -- 4.3. Construction of a closed _{ }-swelling -- Chapter 5. Carrier and nerve theorems -- 5.1. Regular covers -- 5.2. Carrier theorem -- 5.3. Nerve theorem -- Chapter 6. Anticanonical maps and semiregularity -- 6.1. A nerve theorem and the notion of semiregularity -- 6.2. A construction of regular covers -- 6.3. A construction of semiregular covers -- Chapter 7. Extending homeomorphisms by the use of a "brick partitionings" technique -- Chapter 8. Proof of the main results -- Part 3 . Constructing -semiregular and -regular \ { }-covers -- Chapter 9. Basic constructions in _{ }-spaces -- 9.1. Adjustment to a -collection -- 9.2. Fitting closed _{ }-neighborhoods -- 9.3. Patching of holes -- Chapter 10. Core of a cover -- 10.1. The existence of an -core -- 10.2. An -core of a limit of a sequence of deformations -- 10.3. Proof of theorem 10.1 -- 10.4. Retraction onto a core and a proof of theorem 6.17 -- Chapter 11. Proof of theorem 6.7 -- 11.1. Patching of small holes -- 11.2. ⊚-Contractibility -- 11.3. Proof of theorem 6.7 for =0.
505 8 _a11.4. ⋓-Contractibility -- 11.5. Patching of large holes -- 11.6. Proof of theorem 6.7 for &gt -- 0 -- Bibliography -- Index.
588 _aDescription based on publisher supplied metadata and other sources.
590 _aElectronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2024. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
650 0 _aTopological manifolds.
655 4 _aElectronic books.
776 0 8 _iPrint version:
_aNagórko, Andrzej
_tCharacterization and Topological Rigidity of Nöbeling Manifolds
_dProvidence : American Mathematical Society,c2013
_z9780821853665
797 2 _aProQuest (Firm)
830 0 _aMemoirs of the American Mathematical Society
856 4 0 _uhttps://ebookcentral.proquest.com/lib/orpp/detail.action?docID=3114530
_zClick to View
999 _c70025
_d70025