000 03508nam a22004813i 4500
001 EBC3114527
003 MiAaPQ
005 20240729124611.0
006 m o d |
007 cr cnu||||||||
008 240724s2001 xx o ||||0 eng d
020 _a9781470403225
_q(electronic bk.)
020 _z9780821827291
035 _a(MiAaPQ)EBC3114527
035 _a(Au-PeEL)EBL3114527
035 _a(CaPaEBR)ebr11041305
035 _a(OCoLC)922965039
040 _aMiAaPQ
_beng
_erda
_epn
_cMiAaPQ
_dMiAaPQ
050 4 _aQA324 -- .G76 2001eb
082 0 _a510 s;515/.782
100 1 _aGrosser, Michael.
245 1 0 _aOn the Foundations of Nonlinear Generalized Functions I and II.
250 _a1st ed.
264 1 _aProvidence :
_bAmerican Mathematical Society,
_c2001.
264 4 _c©2001.
300 _a1 online resource (113 pages)
336 _atext
_btxt
_2rdacontent
337 _acomputer
_bc
_2rdamedia
338 _aonline resource
_bcr
_2rdacarrier
490 1 _aMemoirs of the American Mathematical Society ;
_vv.153
505 0 _aIntro -- Contents -- Abstract -- Preface -- Part 1. On the Foundations of Nonlinear Generalized Functions I -- Chapter 1. Introduction -- Chapter 2. Notation and Terminology -- Chapter 3. Scheme of construction -- Chapter 4. Calculus -- Chapter 5. C- and J-formalism -- Chapter 6. Calculus on U[sub(ε)](Ω) -- Chapter 7. Construction of a diffeomorphism invariant Colombeau algebra -- 7.1. The basis for the definition of the algebra -- 7.2. The approach taken by J. Jelínek -- 7.3. Stability under differentiation -- 7.4. Diffeomorphism invariance -- Chapter 8. Sheaf properties -- Chapter 9. Separating the basic definition from testing -- Chapter 10. Characterization results -- Chapter 11. Differential Equations -- Part 2. On the Foundations of Nonlinear Generalized Functions II -- Chapter 12. Introduction to Part 2 -- Chapter 13. A simple condition equivalent to negligibility -- Chapter 14. Some more calculus -- Chapter 15. Non-injectivity of the canonical homomorphism from G[sup(d)](Ω) into G[sup(e)](Ω) -- 15.1. Proof of the estimates (15.4) -- 15.2. Proof of smoothness of P -- 15.3. Proof of moderateness of P -- 15.4. Proof of P ∉ N[sup(d)] -- 15.5. Proof of P ∈ N[sup(e)] -- Chapter 16. Classification of smooth Colombeau algebras between G[sup(d)](Ω) and G[sup(e)](Ω) -- 16.1. The development leading from G[sup(e)](Ω) to G[sup(d)](Ω) -- 16.2. Classification of test objects -- 16.3. Classification of full smooth Colombeau algebras -- Chapter 17. The algebra G[sup(2)] -- classification results -- Chapter 18. Concluding remarks -- Acknowledgments -- Bibliography.
588 _aDescription based on publisher supplied metadata and other sources.
590 _aElectronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2024. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
650 0 _aTheory of distributions (Functional analysis).
655 4 _aElectronic books.
700 1 _aFarkas, Eva.
700 1 _aKunzinger, Michael.
700 1 _aSteinbauer, Roland.
776 0 8 _iPrint version:
_aGrosser, Michael
_tOn the Foundations of Nonlinear Generalized Functions I and II
_dProvidence : American Mathematical Society,c2001
_z9780821827291
797 2 _aProQuest (Firm)
830 0 _aMemoirs of the American Mathematical Society
856 4 0 _uhttps://ebookcentral.proquest.com/lib/orpp/detail.action?docID=3114527
_zClick to View
999 _c70022
_d70022