000 04073nam a22004813i 4500
001 EBC3114507
003 MiAaPQ
005 20240729124610.0
006 m o d |
007 cr cnu||||||||
008 240724s2012 xx o ||||0 eng d
020 _a9780821890141
_q(electronic bk.)
020 _z9780821869024
035 _a(MiAaPQ)EBC3114507
035 _a(Au-PeEL)EBL3114507
035 _a(CaPaEBR)ebr11041285
035 _a(OCoLC)922964948
040 _aMiAaPQ
_beng
_erda
_epn
_cMiAaPQ
_dMiAaPQ
050 4 _aQA612.78 -- .B447 2011eb
082 0 _a514/.24
100 1 _aBehrens, Mark.
245 1 0 _aGoodwillie Tower and the EHP Sequence.
250 _a1st ed.
264 1 _aProvidence :
_bAmerican Mathematical Society,
_c2012.
264 4 _c©2011.
300 _a1 online resource (109 pages)
336 _atext
_btxt
_2rdacontent
337 _acomputer
_bc
_2rdamedia
338 _aonline resource
_bcr
_2rdacarrier
490 1 _aMemoirs of the American Mathematical Society ;
_vv.218
505 0 _aIntro -- Contents -- Abstract -- Introduction -- 0.1. Conventions -- Chapter 1. Dyer-Lashof operations and the identity functor -- 1.1. The operadic bar construction -- 1.2. The cooperadic structure on B() -- 1.3. Operad structure on *(Id) -- 1.4. Homology of extended powers -- 1.5. Dyer-Lashof-like operations -- Chapter 2. The Goodwillie tower of the EHP sequence -- 2.1. Fiber sequences associated to the EHP sequence -- 2.2. Homological behavior of the fiber sequences -- 2.3. Transfinite Atiyah-Hirzebruch spectral sequences -- 2.4. Transfinite Goodwillie spectral sequence -- Chapter 3. Goodwillie filtration and the P map -- 3.1. Goodwillie filtration -- 3.2. The genealogy of unstable elements -- 3.3. Behavior of the E and P maps in the TAHSS -- 3.4. Behavior of the E and P maps in the TGSS -- 3.5. Detection in the TGSS -- 3.6. Relationship with Whitehead products -- Chapter 4. Goodwillie differentials and Hopf invariants -- 4.1. Hopf invariants and the transfinite EHPSS -- 4.2. Stable Hopf invariants and metastable homotopy -- 4.3. Goodwillie d1 differentials and stable Hopf invariants -- 4.4. Higher Goodwillie differentials and unstable Hopf invariants -- 4.5. Propagating differentials with the P and E maps -- 4.6. Calculus form of the Whitehead conjecture -- 4.7. Exotic Goodwillie differentials -- Chapter 5. EHPSS differentials -- 5.1. EHPSS naming conventions -- 5.2. Using the TGSS to compute the H map -- 5.3. TEHPSS differentials from TGSS differentials -- 5.4. A bad differential -- Chapter 6. Calculations in the 2-primary Toda range -- 6.1. AHSS calculations -- 6.2. Calculation of the GSS for S1 -- 6.3. GSS calculations -- 6.4. Calculation of the EHPSS -- 6.5. Tables of computations -- 6.5.1. The AHSS for k(L(1)) -- 6.5.2. The AHSS for k(L(2)) -- 6.5.3. The AHSS for k(L(3)) -- 6.5.4. The EHPSS -- 6.5.5. The GSS for n+1(S1).
505 8 _a6.5.6. The GSS for n+2(S2) -- 6.5.7. The GSS for n+3(S3) -- 6.5.8. The GSS for n+4(S4) -- 6.5.9. The GSS for n+5(S5) -- 6.5.10. The GSS for n+6(S6) -- Appendix A. Transfinite spectral sequences associated to towers -- A.1. The Grothendieck group of ordinals -- A.2. Towers -- A.3. The transfinite homotopy spectral sequence of a tower -- A.4. Geometric boundary theorem -- Bibliography.
588 _aDescription based on publisher supplied metadata and other sources.
590 _aElectronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2024. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
650 0 _aHomotopy groups.
650 0 _aAlgebraic topology.
650 0 _aSpectral sequences (Mathematics).
655 4 _aElectronic books.
776 0 8 _iPrint version:
_aBehrens, Mark
_tGoodwillie Tower and the EHP Sequence
_dProvidence : American Mathematical Society,c2012
_z9780821869024
797 2 _aProQuest (Firm)
830 0 _aMemoirs of the American Mathematical Society
856 4 0 _uhttps://ebookcentral.proquest.com/lib/orpp/detail.action?docID=3114507
_zClick to View
999 _c70002
_d70002