000 | 03509nam a22004813i 4500 | ||
---|---|---|---|
001 | EBC3114506 | ||
003 | MiAaPQ | ||
005 | 20240729124610.0 | ||
006 | m o d | | ||
007 | cr cnu|||||||| | ||
008 | 240724s1997 xx o ||||0 eng d | ||
020 |
_a9781470401955 _q(electronic bk.) |
||
020 | _z9780821806241 | ||
035 | _a(MiAaPQ)EBC3114506 | ||
035 | _a(Au-PeEL)EBL3114506 | ||
035 | _a(CaPaEBR)ebr11041284 | ||
035 | _a(OCoLC)922964941 | ||
040 |
_aMiAaPQ _beng _erda _epn _cMiAaPQ _dMiAaPQ |
||
050 | 4 | _aQA612.7 -- .H68 1997eb | |
082 | 0 | _a510 s;514/.24 | |
100 | 1 | _aHovey, Mark. | |
245 | 1 | 0 | _aAxiomatic Stable Homotopy Theory. |
250 | _a1st ed. | ||
264 | 1 |
_aProvidence : _bAmerican Mathematical Society, _c1997. |
|
264 | 4 | _c©1997. | |
300 | _a1 online resource (130 pages) | ||
336 |
_atext _btxt _2rdacontent |
||
337 |
_acomputer _bc _2rdamedia |
||
338 |
_aonline resource _bcr _2rdacarrier |
||
490 | 1 |
_aMemoirs of the American Mathematical Society ; _vv.128 |
|
505 | 0 | _aIntro -- Contents -- 1. Introduction and definitions -- 1.1. The axioms -- 1.2. Examples -- 1.3. Multigrading -- 1.4. Some basic definitions and results -- 2. Smallness, limits and constructibility -- 2.1. Notions of finiteness -- 2.2. Weak colimits and limits -- 2.3. Cellular towers and constructibility -- 3. Bousfield localization -- 3.1. Localization and colocalization functors -- 3.2. Existence of localization functors -- 3.3. Smashing and finite localizations -- 3.4. Geometric morphisms -- 3.5. Properties of localized subcategories -- 3.6. The Bousfield lattice -- 3.7. Rings, fields and minimal Bousfield classes -- 3.8. Bousfield classes of smashing localizations -- 4. Brown representability -- 4.1. Brown categories -- 4.2. Minimal weak colimits -- 4.3. Smashing localizations of Brown categories -- 4.4. A topology on [X, Y] -- 5. Nilpotence and thick subcategories -- 5.1. A naive nilpotence theorem -- 5.2. A thick subcategory theorem -- 6. Noetherian stable homotopy categories -- 6.1. Monochromatic subcategories -- 6.2. Thick subcategories -- 6.3. Localizing subcategories -- 7. Connective stable homotopy theory -- 8. Semisimple stable homotopy theory -- 9. Examples of stable homotopy categories -- 9.1. A general method -- 9.2. Chain complexes -- 9.3. he derived category of a ring -- 9.4. Homotopy categories of equivariant spectra -- 9.5. Cochain complexes of B-comodules -- 9.6. The stable category of B-modules -- 10. Future directions -- 10.1. Grading systems on stable homotopy categories -- 10.2. Other examples -- Appendix A. Background from category theory -- A.1. Triangulated categories -- A.2. Closed symmetric monoidal categories -- References -- Index. | |
588 | _aDescription based on publisher supplied metadata and other sources. | ||
590 | _aElectronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2024. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries. | ||
650 | 0 | _aHomotopy theory. | |
655 | 4 | _aElectronic books. | |
700 | 1 | _aPalmieri, John H. | |
700 | 1 | _aStrickland, Neil P. | |
700 | 1 | _aStrickland, Neil P. | |
776 | 0 | 8 |
_iPrint version: _aHovey, Mark _tAxiomatic Stable Homotopy Theory _dProvidence : American Mathematical Society,c1997 _z9780821806241 |
797 | 2 | _aProQuest (Firm) | |
830 | 0 | _aMemoirs of the American Mathematical Society | |
856 | 4 | 0 |
_uhttps://ebookcentral.proquest.com/lib/orpp/detail.action?docID=3114506 _zClick to View |
999 |
_c70001 _d70001 |