000 03509nam a22004813i 4500
001 EBC3114506
003 MiAaPQ
005 20240729124610.0
006 m o d |
007 cr cnu||||||||
008 240724s1997 xx o ||||0 eng d
020 _a9781470401955
_q(electronic bk.)
020 _z9780821806241
035 _a(MiAaPQ)EBC3114506
035 _a(Au-PeEL)EBL3114506
035 _a(CaPaEBR)ebr11041284
035 _a(OCoLC)922964941
040 _aMiAaPQ
_beng
_erda
_epn
_cMiAaPQ
_dMiAaPQ
050 4 _aQA612.7 -- .H68 1997eb
082 0 _a510 s;514/.24
100 1 _aHovey, Mark.
245 1 0 _aAxiomatic Stable Homotopy Theory.
250 _a1st ed.
264 1 _aProvidence :
_bAmerican Mathematical Society,
_c1997.
264 4 _c©1997.
300 _a1 online resource (130 pages)
336 _atext
_btxt
_2rdacontent
337 _acomputer
_bc
_2rdamedia
338 _aonline resource
_bcr
_2rdacarrier
490 1 _aMemoirs of the American Mathematical Society ;
_vv.128
505 0 _aIntro -- Contents -- 1. Introduction and definitions -- 1.1. The axioms -- 1.2. Examples -- 1.3. Multigrading -- 1.4. Some basic definitions and results -- 2. Smallness, limits and constructibility -- 2.1. Notions of finiteness -- 2.2. Weak colimits and limits -- 2.3. Cellular towers and constructibility -- 3. Bousfield localization -- 3.1. Localization and colocalization functors -- 3.2. Existence of localization functors -- 3.3. Smashing and finite localizations -- 3.4. Geometric morphisms -- 3.5. Properties of localized subcategories -- 3.6. The Bousfield lattice -- 3.7. Rings, fields and minimal Bousfield classes -- 3.8. Bousfield classes of smashing localizations -- 4. Brown representability -- 4.1. Brown categories -- 4.2. Minimal weak colimits -- 4.3. Smashing localizations of Brown categories -- 4.4. A topology on [X, Y] -- 5. Nilpotence and thick subcategories -- 5.1. A naive nilpotence theorem -- 5.2. A thick subcategory theorem -- 6. Noetherian stable homotopy categories -- 6.1. Monochromatic subcategories -- 6.2. Thick subcategories -- 6.3. Localizing subcategories -- 7. Connective stable homotopy theory -- 8. Semisimple stable homotopy theory -- 9. Examples of stable homotopy categories -- 9.1. A general method -- 9.2. Chain complexes -- 9.3. he derived category of a ring -- 9.4. Homotopy categories of equivariant spectra -- 9.5. Cochain complexes of B-comodules -- 9.6. The stable category of B-modules -- 10. Future directions -- 10.1. Grading systems on stable homotopy categories -- 10.2. Other examples -- Appendix A. Background from category theory -- A.1. Triangulated categories -- A.2. Closed symmetric monoidal categories -- References -- Index.
588 _aDescription based on publisher supplied metadata and other sources.
590 _aElectronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2024. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
650 0 _aHomotopy theory.
655 4 _aElectronic books.
700 1 _aPalmieri, John H.
700 1 _aStrickland, Neil P.
700 1 _aStrickland, Neil P.
776 0 8 _iPrint version:
_aHovey, Mark
_tAxiomatic Stable Homotopy Theory
_dProvidence : American Mathematical Society,c1997
_z9780821806241
797 2 _aProQuest (Firm)
830 0 _aMemoirs of the American Mathematical Society
856 4 0 _uhttps://ebookcentral.proquest.com/lib/orpp/detail.action?docID=3114506
_zClick to View
999 _c70001
_d70001