000 | 03320nam a22004813i 4500 | ||
---|---|---|---|
001 | EBC3114463 | ||
003 | MiAaPQ | ||
005 | 20240729124609.0 | ||
006 | m o d | | ||
007 | cr cnu|||||||| | ||
008 | 240724s2001 xx o ||||0 eng d | ||
020 |
_a9781470403041 _q(electronic bk.) |
||
020 | _z9780821826454 | ||
035 | _a(MiAaPQ)EBC3114463 | ||
035 | _a(Au-PeEL)EBL3114463 | ||
035 | _a(CaPaEBR)ebr11041241 | ||
035 | _a(OCoLC)922965134 | ||
040 |
_aMiAaPQ _beng _erda _epn _cMiAaPQ _dMiAaPQ |
||
050 | 4 | _aQA252.5 -- .K33 2001eb | |
082 | 0 | _a510 s;512/.24 | |
100 | 1 | _aKac, V.G. | |
245 | 1 | 0 | _aGraded Simple Jordan Superalgebras of Growth One. |
250 | _a1st ed. | ||
264 | 1 |
_aProvidence : _bAmerican Mathematical Society, _c2001. |
|
264 | 4 | _c©2001. | |
300 | _a1 online resource (157 pages) | ||
336 |
_atext _btxt _2rdacontent |
||
337 |
_acomputer _bc _2rdamedia |
||
338 |
_aonline resource _bcr _2rdacarrier |
||
490 | 1 |
_aMemoirs of the American Mathematical Society ; _vv.150 |
|
505 | 0 | _aIntro -- Contents -- Introduction -- Statement of the Problem -- Definitions and Notation -- The Main Result -- Structure of the Proof -- Chapter 1. Structure of the Even Part -- 1.1. General results -- Chapter 2. Cartan type -- 2.1. Results -- 2.2. A/I one-sided graded -- Chapter 3. Even Part is Direct Sum of two Loop Algebras -- 3.1. General Results -- 3.2. A = F[t[sup(-n)],t[sup(n)]] -- 3.3. A = F[t[sup(-n1)][sub(1)],t[sup(n1)]sub(1)]] ⊕ F[t[sup(-n2)][sub(2)],t[sup(n2)]sub(2)]] -- 3.4. A = L(G') ⊕ L(G) -- Chapter 4. A is a Loop Algebra -- 4.1. General Results -- Chapter 5. J is a finite dimensional Jordan Superalgebra or a Jordan Superalgebra of a Superform -- 5.1. A is finite dimensional -- 5.2. A/I finite dimensional, I ≠ (0) -- 5.3. A is a Jordan algebra of a bilinear form -- Chapter 6. The Main Case -- 6.1. Splitting Theorem -- 6.2. Structure of J -- Chapter 7. Impossible Cases -- 7.1. I = (0), A = A[sup((1))] ⊕ A[sup((2))] -- A[sup((1))] is a loop algebra, A[sup((2))] is one-sided graded -- 7.2. A = A[sup((1))] ⊕ A[sup((2))], A[sup((1))] is a negatively graded algebra, A[sup((2))] is a positively graded algebra -- 7.3. A = A[sup((1))] ⊕ A[sup((2))] with A[sup((1))] infinite dimensional Jordan algebra of a bilinear form -- 7.4. I ≠ (0), A/I is an infinite dimensional Jordan algebra of a nondegenerate symmetric bilinear form -- 7.5. A = A[sup((1))] ⊕ A[sup((2))], A[sup((1))] is finite dimensional -- A[sup((2))] is a loop algebra -- Bibliography. | |
588 | _aDescription based on publisher supplied metadata and other sources. | ||
590 | _aElectronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2024. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries. | ||
650 | 0 | _aJordan algebras. | |
650 | 0 | _aSuperalgebras. | |
655 | 4 | _aElectronic books. | |
700 | 1 | _aMartinez, C. | |
700 | 1 | _aZelmanov, E. | |
776 | 0 | 8 |
_iPrint version: _aKac, V.G. _tGraded Simple Jordan Superalgebras of Growth One _dProvidence : American Mathematical Society,c2001 _z9780821826454 |
797 | 2 | _aProQuest (Firm) | |
830 | 0 | _aMemoirs of the American Mathematical Society | |
856 | 4 | 0 |
_uhttps://ebookcentral.proquest.com/lib/orpp/detail.action?docID=3114463 _zClick to View |
999 |
_c69958 _d69958 |