000 03320nam a22004813i 4500
001 EBC3114463
003 MiAaPQ
005 20240729124609.0
006 m o d |
007 cr cnu||||||||
008 240724s2001 xx o ||||0 eng d
020 _a9781470403041
_q(electronic bk.)
020 _z9780821826454
035 _a(MiAaPQ)EBC3114463
035 _a(Au-PeEL)EBL3114463
035 _a(CaPaEBR)ebr11041241
035 _a(OCoLC)922965134
040 _aMiAaPQ
_beng
_erda
_epn
_cMiAaPQ
_dMiAaPQ
050 4 _aQA252.5 -- .K33 2001eb
082 0 _a510 s;512/.24
100 1 _aKac, V.G.
245 1 0 _aGraded Simple Jordan Superalgebras of Growth One.
250 _a1st ed.
264 1 _aProvidence :
_bAmerican Mathematical Society,
_c2001.
264 4 _c©2001.
300 _a1 online resource (157 pages)
336 _atext
_btxt
_2rdacontent
337 _acomputer
_bc
_2rdamedia
338 _aonline resource
_bcr
_2rdacarrier
490 1 _aMemoirs of the American Mathematical Society ;
_vv.150
505 0 _aIntro -- Contents -- Introduction -- Statement of the Problem -- Definitions and Notation -- The Main Result -- Structure of the Proof -- Chapter 1. Structure of the Even Part -- 1.1. General results -- Chapter 2. Cartan type -- 2.1. Results -- 2.2. A/I one-sided graded -- Chapter 3. Even Part is Direct Sum of two Loop Algebras -- 3.1. General Results -- 3.2. A = F[t[sup(-n)],t[sup(n)]] -- 3.3. A = F[t[sup(-n1)][sub(1)],t[sup(n1)]sub(1)]] ⊕ F[t[sup(-n2)][sub(2)],t[sup(n2)]sub(2)]] -- 3.4. A = L(G') ⊕ L(G) -- Chapter 4. A is a Loop Algebra -- 4.1. General Results -- Chapter 5. J is a finite dimensional Jordan Superalgebra or a Jordan Superalgebra of a Superform -- 5.1. A is finite dimensional -- 5.2. A/I finite dimensional, I ≠ (0) -- 5.3. A is a Jordan algebra of a bilinear form -- Chapter 6. The Main Case -- 6.1. Splitting Theorem -- 6.2. Structure of J -- Chapter 7. Impossible Cases -- 7.1. I = (0), A = A[sup((1))] ⊕ A[sup((2))] -- A[sup((1))] is a loop algebra, A[sup((2))] is one-sided graded -- 7.2. A = A[sup((1))] ⊕ A[sup((2))], A[sup((1))] is a negatively graded algebra, A[sup((2))] is a positively graded algebra -- 7.3. A = A[sup((1))] ⊕ A[sup((2))] with A[sup((1))] infinite dimensional Jordan algebra of a bilinear form -- 7.4. I ≠ (0), A/I is an infinite dimensional Jordan algebra of a nondegenerate symmetric bilinear form -- 7.5. A = A[sup((1))] ⊕ A[sup((2))], A[sup((1))] is finite dimensional -- A[sup((2))] is a loop algebra -- Bibliography.
588 _aDescription based on publisher supplied metadata and other sources.
590 _aElectronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2024. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
650 0 _aJordan algebras.
650 0 _aSuperalgebras.
655 4 _aElectronic books.
700 1 _aMartinez, C.
700 1 _aZelmanov, E.
776 0 8 _iPrint version:
_aKac, V.G.
_tGraded Simple Jordan Superalgebras of Growth One
_dProvidence : American Mathematical Society,c2001
_z9780821826454
797 2 _aProQuest (Firm)
830 0 _aMemoirs of the American Mathematical Society
856 4 0 _uhttps://ebookcentral.proquest.com/lib/orpp/detail.action?docID=3114463
_zClick to View
999 _c69958
_d69958