000 | 04166nam a22004933i 4500 | ||
---|---|---|---|
001 | EBC3114459 | ||
003 | MiAaPQ | ||
005 | 20240729124608.0 | ||
006 | m o d | | ||
007 | cr cnu|||||||| | ||
008 | 240724s2003 xx o ||||0 eng d | ||
020 |
_a9781470403911 _q(electronic bk.) |
||
020 | _z9780821834503 | ||
035 | _a(MiAaPQ)EBC3114459 | ||
035 | _a(Au-PeEL)EBL3114459 | ||
035 | _a(CaPaEBR)ebr11041237 | ||
035 | _a(OCoLC)922965130 | ||
040 |
_aMiAaPQ _beng _erda _epn _cMiAaPQ _dMiAaPQ |
||
050 | 4 | _aQA248 -- .Z37 2004eb | |
082 | 0 | _a510 s;511.3/22 | |
100 | 1 | _aZapletal, Jindřich. | |
245 | 1 | 0 | _aDescriptive Set Theory and Definable Forcing. |
250 | _a1st ed. | ||
264 | 1 |
_aProvidence : _bAmerican Mathematical Society, _c2003. |
|
264 | 4 | _c©2004. | |
300 | _a1 online resource (158 pages) | ||
336 |
_atext _btxt _2rdacontent |
||
337 |
_acomputer _bc _2rdamedia |
||
338 |
_aonline resource _bcr _2rdacarrier |
||
490 | 1 |
_aMemoirs of the American Mathematical Society ; _vv.167 |
|
505 | 0 | _aIntro -- Contents -- 1 Introduction -- 1.1 The subject of the book -- 1.2 The structure of the book -- 1.3 History and acknowledgments -- 1.4 Notation and literature -- 2 Definable forcing adding a single real -- 2.1 The factor algebras -- 2.2 Basic descriptive set theoretic considerations -- 2.3 Examples -- 2.3.1 The ideal of countable sets -- 2.3.2 The ideal of σ bounded sets -- 2.3.3 The ideal of meager sets -- 2.3.4 The cmin ideal -- 2.3.5 Ideals generated by closed sets -- 2.3.6 The Laver ideal -- 2.3.7 Ideals associated with creature forcings -- 2.3.8 The Lebesgue null ideal -- 2.3.9 Mathias forcing -- 2.3.10 The E[sub(0)] ideal -- 2.3.11 Silver forcing -- 2.3.12 The σ porous ideal -- 2.3.13 Steprans forcing -- 2.3.14 Hausdorff measures -- 2.3.15 Unions of ideals -- 2.3.16 Cross-products of ideals -- 2.3.17 The σ splitting ideal -- 2.3.18 Namba forcing -- 3 The countable support iteration -- 3.1 A topological view of the iteration -- 3.2 The iterated Fubini powers of an ideal -- 3.3 A dichotomy for Π[sup(1)][sub(1)]on Σ[sup(1)][sub(1)] ideals -- 3.4 A dichotomy for almost full ideals -- 3.5 Other dichotomies -- 3.6 Cardinal invariants of the iterated ideals -- 4 Other forcings -- 4.1 Illfounded iterations -- 4.1.1 Strongly proper forcings -- 4.1.2 The ideals associated with countable length iterations -- 4.1.3 The properties of the factor ordering -- 4.1.4 The uncountable length -- 4.1.5 Sacks forcing iteration -- 4.2 Towers of ideals -- 4.2.1 Shooting a club with no infinite subset in the ground model -- 4.2.2 Shooting a club with finite intersection with every ground model ordertype w set -- 5 Applications -- 5.1 Ciesielski-Pawlikowski Axiom CPA and variations -- 5.1.1 The axioms -- 5.1.2 Absoluteness with no large cardinals -- 5.1.3 Absoluteness with large cardinals -- 5.2 Duality theorems -- 5.3 Interpolation theorems. | |
505 | 8 | _a5.4 Preservation theorems -- 5.4.1 Ergodic ideals -- 5.4.2 Preservation and ergodicity -- 5.4.3 Uniformity of σ ideal generated by closed sets -- A: Examples of cardinal invariants -- B: The syntax of cardinal invariants -- B.1 The covering numbers -- B.2 The tame and very tame invariants -- C: Effective descriptive set theory -- D: Large cardinals -- D.1 The absoluteness results -- D.2 The determinacy results. | |
588 | _aDescription based on publisher supplied metadata and other sources. | ||
590 | _aElectronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2024. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries. | ||
650 | 0 | _aDescriptive set theory. | |
650 | 0 | _aForcing (Model theory). | |
650 | 0 | _aContinuum hypothesis. | |
650 | 0 | _aBorel sets. | |
655 | 4 | _aElectronic books. | |
776 | 0 | 8 |
_iPrint version: _aZapletal, Jindřich _tDescriptive Set Theory and Definable Forcing _dProvidence : American Mathematical Society,c2003 _z9780821834503 |
797 | 2 | _aProQuest (Firm) | |
830 | 0 | _aMemoirs of the American Mathematical Society | |
856 | 4 | 0 |
_uhttps://ebookcentral.proquest.com/lib/orpp/detail.action?docID=3114459 _zClick to View |
999 |
_c69954 _d69954 |