000 03376nam a22004573i 4500
001 EBC3114458
003 MiAaPQ
005 20240729124608.0
006 m o d |
007 cr cnu||||||||
008 240724s2002 xx o ||||0 eng d
020 _a9781470403584
_q(electronic bk.)
020 _z9780821829882
035 _a(MiAaPQ)EBC3114458
035 _a(Au-PeEL)EBL3114458
035 _a(CaPaEBR)ebr11041236
035 _a(OCoLC)922964903
040 _aMiAaPQ
_beng
_erda
_epn
_cMiAaPQ
_dMiAaPQ
050 4 _aQA612.32 -- .B36 2002eb
082 0 _a510 s;514/.23
100 1 _aBanagl, Markus.
245 1 0 _aExtending Intersection Homology Type Invariants to Non-Witt Spaces.
250 _a1st ed.
264 1 _aProvidence :
_bAmerican Mathematical Society,
_c2002.
264 4 _c©2002.
300 _a1 online resource (101 pages)
336 _atext
_btxt
_2rdacontent
337 _acomputer
_bc
_2rdamedia
338 _aonline resource
_bcr
_2rdacarrier
490 1 _aMemoirs of the American Mathematical Society ;
_vv.160
505 0 _aIntro -- Contents -- Chapter 1. Introduction -- 1. History -- 2. Motivation -- 3. The Main Result: A Postnikov System of Lagrangian Structures -- 4. Consequences: Characteristic Classes -- 5. Ordered Resolutions - A Model Construction -- 6. Applications -- 7. Further Developments -- 8. Sign Questions -- 9. Some Remarks on Coefficients -- 10. Acknowledgments -- 11. Notation -- Chapter 2. The Algebraic Framework -- 1. The Lifting Obstruction -- 2. The Category of Self-Dual Sheaves Compatible with IH -- 3. Lagrangian Structures -- 4. Extracting Lagrangian Structures from Self-Dual Sheaves -- 5. Lagrangian Structures as Building Blocks for Self-Dual Sheaves -- 6. A Postnikov system -- Chapter 3. Ordered Resolutions -- 1. The Purpose of the Construction -- 2. Definitions -- 3. The PL Construction -- 4. Inductive Singularization of a Manifold -- Chapter 4. The Cobordism Group Ω[sup(SD)][sub(*)] -- 1. The Closed Objects -- 2. The Admissible Cobordisms -- 3. The Cobordism Invariance of σ -- 4. Relation to Witt Space Cobordism -- Chapter 5. Lagrangian Structures and Ordered Resolutions -- 1. Statement of Result -- 2. The inductive set-up -- 3. Construction of a nonsingular pairing on H[sup(k)](j*S[sup[.)] -- 4. Stalks of H[sup(k)](j*S[sup[.)] as the hypercohomology of the link of Σ -- 5. The restriction of L[[sup(.)](X[sup((m))]) to V(x) is self-dual -- 6. The construction of a Lagrangian subsheaf of H[sup(k)](j*S[sup[.)] -- 7. The definition of L[sup(.)](X[sup((m+1))]) -- Appendix A. On Signs -- Bibliography.
588 _aDescription based on publisher supplied metadata and other sources.
590 _aElectronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2024. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
650 0 _aIntersection homology theory.
650 0 _aDuality theory (Mathematics).
655 4 _aElectronic books.
776 0 8 _iPrint version:
_aBanagl, Markus
_tExtending Intersection Homology Type Invariants to Non-Witt Spaces
_dProvidence : American Mathematical Society,c2002
_z9780821829882
797 2 _aProQuest (Firm)
830 0 _aMemoirs of the American Mathematical Society
856 4 0 _uhttps://ebookcentral.proquest.com/lib/orpp/detail.action?docID=3114458
_zClick to View
999 _c69953
_d69953