000 | 03376nam a22004573i 4500 | ||
---|---|---|---|
001 | EBC3114458 | ||
003 | MiAaPQ | ||
005 | 20240729124608.0 | ||
006 | m o d | | ||
007 | cr cnu|||||||| | ||
008 | 240724s2002 xx o ||||0 eng d | ||
020 |
_a9781470403584 _q(electronic bk.) |
||
020 | _z9780821829882 | ||
035 | _a(MiAaPQ)EBC3114458 | ||
035 | _a(Au-PeEL)EBL3114458 | ||
035 | _a(CaPaEBR)ebr11041236 | ||
035 | _a(OCoLC)922964903 | ||
040 |
_aMiAaPQ _beng _erda _epn _cMiAaPQ _dMiAaPQ |
||
050 | 4 | _aQA612.32 -- .B36 2002eb | |
082 | 0 | _a510 s;514/.23 | |
100 | 1 | _aBanagl, Markus. | |
245 | 1 | 0 | _aExtending Intersection Homology Type Invariants to Non-Witt Spaces. |
250 | _a1st ed. | ||
264 | 1 |
_aProvidence : _bAmerican Mathematical Society, _c2002. |
|
264 | 4 | _c©2002. | |
300 | _a1 online resource (101 pages) | ||
336 |
_atext _btxt _2rdacontent |
||
337 |
_acomputer _bc _2rdamedia |
||
338 |
_aonline resource _bcr _2rdacarrier |
||
490 | 1 |
_aMemoirs of the American Mathematical Society ; _vv.160 |
|
505 | 0 | _aIntro -- Contents -- Chapter 1. Introduction -- 1. History -- 2. Motivation -- 3. The Main Result: A Postnikov System of Lagrangian Structures -- 4. Consequences: Characteristic Classes -- 5. Ordered Resolutions - A Model Construction -- 6. Applications -- 7. Further Developments -- 8. Sign Questions -- 9. Some Remarks on Coefficients -- 10. Acknowledgments -- 11. Notation -- Chapter 2. The Algebraic Framework -- 1. The Lifting Obstruction -- 2. The Category of Self-Dual Sheaves Compatible with IH -- 3. Lagrangian Structures -- 4. Extracting Lagrangian Structures from Self-Dual Sheaves -- 5. Lagrangian Structures as Building Blocks for Self-Dual Sheaves -- 6. A Postnikov system -- Chapter 3. Ordered Resolutions -- 1. The Purpose of the Construction -- 2. Definitions -- 3. The PL Construction -- 4. Inductive Singularization of a Manifold -- Chapter 4. The Cobordism Group Ω[sup(SD)][sub(*)] -- 1. The Closed Objects -- 2. The Admissible Cobordisms -- 3. The Cobordism Invariance of σ -- 4. Relation to Witt Space Cobordism -- Chapter 5. Lagrangian Structures and Ordered Resolutions -- 1. Statement of Result -- 2. The inductive set-up -- 3. Construction of a nonsingular pairing on H[sup(k)](j*S[sup[.)] -- 4. Stalks of H[sup(k)](j*S[sup[.)] as the hypercohomology of the link of Σ -- 5. The restriction of L[[sup(.)](X[sup((m))]) to V(x) is self-dual -- 6. The construction of a Lagrangian subsheaf of H[sup(k)](j*S[sup[.)] -- 7. The definition of L[sup(.)](X[sup((m+1))]) -- Appendix A. On Signs -- Bibliography. | |
588 | _aDescription based on publisher supplied metadata and other sources. | ||
590 | _aElectronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2024. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries. | ||
650 | 0 | _aIntersection homology theory. | |
650 | 0 | _aDuality theory (Mathematics). | |
655 | 4 | _aElectronic books. | |
776 | 0 | 8 |
_iPrint version: _aBanagl, Markus _tExtending Intersection Homology Type Invariants to Non-Witt Spaces _dProvidence : American Mathematical Society,c2002 _z9780821829882 |
797 | 2 | _aProQuest (Firm) | |
830 | 0 | _aMemoirs of the American Mathematical Society | |
856 | 4 | 0 |
_uhttps://ebookcentral.proquest.com/lib/orpp/detail.action?docID=3114458 _zClick to View |
999 |
_c69953 _d69953 |