000 02921nam a22004813i 4500
001 EBC3114431
003 MiAaPQ
005 20240729124607.0
006 m o d |
007 cr cnu||||||||
008 240724s2003 xx o ||||0 eng d
020 _a9781470403904
_q(electronic bk.)
020 _z9780821834459
035 _a(MiAaPQ)EBC3114431
035 _a(Au-PeEL)EBL3114431
035 _a(CaPaEBR)ebr11041209
035 _a(OCoLC)922965057
040 _aMiAaPQ
_beng
_erda
_epn
_cMiAaPQ
_dMiAaPQ
050 4 _aQA614.833 -- .B35 2004eb
082 0 _a510 s;515/.39
100 1 _aBaldomá, Inmaculada.
245 1 0 _aExponentially Small Splitting of Invariant Manifolds of Parabolic Points.
250 _a1st ed.
264 1 _aProvidence :
_bAmerican Mathematical Society,
_c2003.
264 4 _c©2004.
300 _a1 online resource (102 pages)
336 _atext
_btxt
_2rdacontent
337 _acomputer
_bc
_2rdamedia
338 _aonline resource
_bcr
_2rdacarrier
490 1 _aMemoirs of the American Mathematical Society ;
_vv.167
505 0 _aIntro -- Contents -- Introduction -- 1. Notation and main results -- 1.1. Notation and hypotheses -- 1.2. Main results -- 1.3. Example -- 2. Analytic properties of the homoclinic orbit of the unperturbed system -- 2.1. Introduction and main results -- 2.2. Proof of Proposition 2.1 -- 3. Parameterization of local invariant manifolds -- 3.1. Introduction -- 3.2. Definitions and main result -- 3.3. Averaging of the equation -- 3.4. Estimates for the Poincaré map -- 3.5. The operators B and B -- 3.6. Proof of Theorem 3.1 -- 4. Flow box coordinates -- 4.1. Introduction -- 4.2. Definitions and main result -- 4.3. A preliminary change of variables -- 4.4. The unperturbed case -- 4.5. Flow box coordinates in a complex domain -- 4.6. Proof of Theorem 4.2 -- 5. The Extension Theorem -- 6. Splitting of separatrices -- 6.1. Introduction -- 6.2. The splitting function -- 6.3. Proof of Theorem 1.1 and its corollary -- 6.4. Proof of Lemma 6.4 -- 6.5. Proof of Corollary 1.1 -- References.
588 _aDescription based on publisher supplied metadata and other sources.
590 _aElectronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2024. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
650 0 _aNonholonomic dynamical systems.
650 0 _aHamiltonian systems.
650 0 _aLagrangian points.
655 4 _aElectronic books.
700 1 _aFontich, Ernest.
776 0 8 _iPrint version:
_aBaldomá, Inmaculada
_tExponentially Small Splitting of Invariant Manifolds of Parabolic Points
_dProvidence : American Mathematical Society,c2003
_z9780821834459
797 2 _aProQuest (Firm)
830 0 _aMemoirs of the American Mathematical Society
856 4 0 _uhttps://ebookcentral.proquest.com/lib/orpp/detail.action?docID=3114431
_zClick to View
999 _c69926
_d69926