000 02306nam a22004573i 4500
001 EBC3114429
003 MiAaPQ
005 20240729124607.0
006 m o d |
007 cr cnu||||||||
008 240724s2002 xx o ||||0 eng d
020 _a9781470403577
_q(electronic bk.)
020 _z9780821829875
035 _a(MiAaPQ)EBC3114429
035 _a(Au-PeEL)EBL3114429
035 _a(CaPaEBR)ebr11041207
035 _a(OCoLC)922964917
040 _aMiAaPQ
_beng
_erda
_epn
_cMiAaPQ
_dMiAaPQ
050 4 _aQA612.78 -- .D38 2002eb
082 0 _a510 s;514/.24
100 1 _aDavis, Donald M.
245 1 0 _aFrom Representation Theory to Homotopy Groups.
250 _a1st ed.
264 1 _aProvidence :
_bAmerican Mathematical Society,
_c2002.
264 4 _c©2002.
300 _a1 online resource (65 pages)
336 _atext
_btxt
_2rdacontent
337 _acomputer
_bc
_2rdamedia
338 _aonline resource
_bcr
_2rdacarrier
490 1 _aMemoirs of the American Mathematical Society ;
_vv.160
505 0 _aIntro -- Contents -- 1. Introduction -- 2. Representation theory and ψ[sub(2)] in K-theory -- 3. Nice form for ψ[sub(2)] in PK[sub(l)](E[sub(8)])[sub(5)] and PK[sup(1)](X) -- 4. Determination of υ[sup(…1)][sub(1)]π[sub(2m)](E[sub(8)] -- 5) -- 5. Determination of υ[sup(…1)][sub(1)]π[sub(2m…1)(E[sub(8)] -- 5) -- 6. Calculation of υ[sup(…1)][sub(1)]π[sub(*)](E[sub(8)] -- 3 -- 7. LiE program for computing λ[sup(2)] in R(E[sub(8)]) -- 8. Analysis of F[sub(4)] and E[sub(7)] at the prime 3 -- References.
588 _aDescription based on publisher supplied metadata and other sources.
590 _aElectronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2024. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
650 0 _aHomotopy groups.
650 0 _aRepresentations of groups.
655 4 _aElectronic books.
776 0 8 _iPrint version:
_aDavis, Donald M.
_tFrom Representation Theory to Homotopy Groups
_dProvidence : American Mathematical Society,c2002
_z9780821829875
797 2 _aProQuest (Firm)
830 0 _aMemoirs of the American Mathematical Society
856 4 0 _uhttps://ebookcentral.proquest.com/lib/orpp/detail.action?docID=3114429
_zClick to View
999 _c69924
_d69924