000 03614nam a22004813i 4500
001 EBC3114426
003 MiAaPQ
005 20240729124607.0
006 m o d |
007 cr cnu||||||||
008 240724s2003 xx o ||||0 eng d
020 _a9781470403737
_q(electronic bk.)
020 _z9780821832684
035 _a(MiAaPQ)EBC3114426
035 _a(Au-PeEL)EBL3114426
035 _a(CaPaEBR)ebr11041204
035 _a(OCoLC)922965090
040 _aMiAaPQ
_beng
_erda
_epn
_cMiAaPQ
_dMiAaPQ
050 4 _aQA614.83 -- .L63 2003eb
082 0 _a510 s;514/.74
100 1 _aLochak, P.
245 1 0 _aOn the Splitting of Invariant Manifolds in Multidimensional Near-Integrable Hamiltonian Systems.
250 _a1st ed.
264 1 _aProvidence :
_bAmerican Mathematical Society,
_c2003.
264 4 _c©2003.
300 _a1 online resource (162 pages)
336 _atext
_btxt
_2rdacontent
337 _acomputer
_bc
_2rdamedia
338 _aonline resource
_bcr
_2rdacarrier
490 1 _aMemoirs of the American Mathematical Society ;
_vv.163
505 0 _aIntro -- Contents -- Chapter 0. Introduction and Some Salient Features of the Model Hamiltonian -- Chapter 1. Symplectic Geometry and the Splitting of Invariant Manifolds -- 1.1. Symplectic geometry: a short reminder -- 1.2. Hyperbolic invariant manifolds -- 1.3. Angles of Lagrangian planes: the symplectic viewpoint -- 1.4. Angles of Lagrangian planes: the Euclidean viewpoint -- 1.5. Symplectic isomorphisms, angles and splitting forms -- 1.6. The splitting of Lagrangian submanifolds -- 1.7. Lagrangian submanifolds in a cotangent bundle -- 1.8. Hyperbolic tori and normally hyperbolic invariant manifolds -- 1.9. The perturbative setting -- 1.10. Lagrangian intersections and homoclinic trajectories -- 1.11. The splitting of the invariant manifolds of hyperbolic tori -- Chapter 2. Estimating the Splitting Matrix Using Normal Forms -- 2.1. Resonant normal forms -- 2.2. Computations in the vicinity of a resonant surface -- 2.3. Splitting in a perturbative setting, variance and stability -- 2.4. General exponential estimates for the splitting matrix -- 2.5. Persistence of tori, invariant manifolds and homoclinic trajectories -- 2.6. Splitting and stability -- Chapter 3. The Hamilton-Jacobi Method for a Simple Resonance -- 3.1. Notation and assumptions -- 3.2. Formal solutions and the Hamilton-Jacobi algorithm -- 3.3. Convergence and domains of analyticity -- 3.4. Exponential closeness of the invariant manifolds -- 3.5. Linear versus nonlinear splitting -- 3.6. Some variants and possible generalizations -- 3.7. A short historical tour and some concluding remarks -- Appendix. Invariant Tori With Vanishing or Zero Torsion -- Bibliography.
588 _aDescription based on publisher supplied metadata and other sources.
590 _aElectronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2024. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
650 0 _aHamiltonian systems.
650 0 _aInvariant manifolds.
655 4 _aElectronic books.
700 1 _aMarco, J.-P.
700 1 _aSauzin, D.
776 0 8 _iPrint version:
_aLochak, P.
_tOn the Splitting of Invariant Manifolds in Multidimensional Near-Integrable Hamiltonian Systems
_dProvidence : American Mathematical Society,c2003
_z9780821832684
797 2 _aProQuest (Firm)
830 0 _aMemoirs of the American Mathematical Society
856 4 0 _uhttps://ebookcentral.proquest.com/lib/orpp/detail.action?docID=3114426
_zClick to View
999 _c69921
_d69921