000 03892nam a22004693i 4500
001 EBC3114410
003 MiAaPQ
005 20240729124607.0
006 m o d |
007 cr cnu||||||||
008 240724s1997 xx o ||||0 eng d
020 _a9781470401993
_q(electronic bk.)
020 _z9780821806227
035 _a(MiAaPQ)EBC3114410
035 _a(Au-PeEL)EBL3114410
035 _a(CaPaEBR)ebr11041188
035 _a(OCoLC)922964921
040 _aMiAaPQ
_beng
_erda
_epn
_cMiAaPQ
_dMiAaPQ
050 4 _aQA171.485 -- .W37 1997eb
082 0 _a510 s;511.3/3
100 1 _aWarren, Richard.
245 1 0 _aStructure of k-CS- Transitive Cycle-Free Partial Orders.
250 _a1st ed.
264 1 _aProvidence :
_bAmerican Mathematical Society,
_c1997.
264 4 _c©1997.
300 _a1 online resource (183 pages)
336 _atext
_btxt
_2rdacontent
337 _acomputer
_bc
_2rdamedia
338 _aonline resource
_bcr
_2rdacarrier
490 1 _aMemoirs of the American Mathematical Society ;
_vv.129
505 0 _aIntro -- Contents -- 1 Extended Introduction -- 1.1 Introduction -- 1.2 Cycle-free partial orders -- 1.3 Homogeneous structures -- 1.4 k-connected set transitivity -- 1.5 Finite and infinite chain CFPO[sub(s)] -- 1.6 Elements of the classification -- 1.7 Further work -- 2 Preliminaries -- 2.1 Introduction -- 2.2 Dedekind-complete partial orders -- 2.3 Cycle-free partial orders -- 2.4 Concerning paths, and the density lemma -- 2.5 Substructures, cones, and their extensions -- 2.6 Convex cycle-free partial orders -- 3 Properties of k-CS-transitive CFPOs -- 3.1 Introduction -- 3.2 k-CS-transivity and k-CS-homogeneity -- 3.3 The infinite chain case -- 3.4 The finite chain case and the bipartite theorem -- 3.5 Sporadic and skeletal cycle-free partial orders -- 4 Constructing CFPOs -- 4.1 Introduction -- 4.2 The completion theorem (Part one) -- 4.3 The completion theorem (Part two) -- 4.4 Useful results concerning M,M[sup(D)] and M -- 5 Characterization and Isomorphism Theorems -- 5.1 Introduction -- 5.2 Characterizations in the infinite chain case -- 5.3 The isomorphism theorems and their corollaries -- 6 Classification of skeletal CFPOs (Part 1) -- 6.1 Introduction -- 6.2 Case A: ↑Ram(M) = ↓Ram(M) -- 6.3 Case B: ↑Ram(M)∩↓Ram(M) = φand Ram(M) is dense -- 6.4 Covering orders -- 6.5 Case C: Fully covered cycle-free partial orders -- 6.6 Case D: Partially covered cycle-free partial orders -- 6.7 Subcase D1: The cycle-free partial orders D[sup(d,u,u')][sub(σ)] -- 6.8 Subcase D2: The cycle-free partial orders e[sup(d,u,u')][sub(σ)] -- 6.9 Subcase D3: The cycle-free partial orders F[sup(d,u,u')][sub(σ,z)] -- 6.10 Summary -- 7 Classification of skeletal CFPOs (Part 2) -- 7.1 Introduction -- 7.2 The cycle-free partial orders g[sup(u,d,u',d')][sub(z)] -- 7.3 Case 2: The cycle-free partial orders H[sup(u,d,u',d')][sub(z)] -- 7.4 An empty case.
505 8 _a7.5 Case 3: The remaining few -- 7.6 Conclusions in the skeletal case -- Appendix: Sporadic Cycle-free Partial Orders -- A.1 Introduction -- A.2 The classification -- A.3 Conclusions.
588 _aDescription based on publisher supplied metadata and other sources.
590 _aElectronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2024. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
650 0 _aPartially ordered sets.
650 0 _aCombinatorial set theory.
655 4 _aElectronic books.
776 0 8 _iPrint version:
_aWarren, Richard
_tStructure of k-CS- Transitive Cycle-Free Partial Orders
_dProvidence : American Mathematical Society,c1997
_z9780821806227
797 2 _aProQuest (Firm)
830 0 _aMemoirs of the American Mathematical Society
856 4 0 _uhttps://ebookcentral.proquest.com/lib/orpp/detail.action?docID=3114410
_zClick to View
999 _c69905
_d69905