000 02524nam a22004573i 4500
001 EBC3114389
003 MiAaPQ
005 20240729124606.0
006 m o d |
007 cr cnu||||||||
008 240724s1999 xx o ||||0 eng d
020 _a9781470402495
_q(electronic bk.)
020 _z9780821809617
035 _a(MiAaPQ)EBC3114389
035 _a(Au-PeEL)EBL3114389
035 _a(CaPaEBR)ebr11041167
035 _a(OCoLC)922981920
040 _aMiAaPQ
_beng
_erda
_epn
_cMiAaPQ
_dMiAaPQ
050 4 _aQA323 -- .A47 2000eb
082 0 _a510 s;515/.73
100 1 _aAlspach, Dale E.
245 1 0 _aTensor products and independent sums of Lp-spaces, 1<p<[infinity].
250 _a1st ed.
264 1 _aProvidence :
_bAmerican Mathematical Society,
_c1999.
264 4 _c©2000.
300 _a1 online resource (90 pages)
336 _atext
_btxt
_2rdacontent
337 _acomputer
_bc
_2rdamedia
338 _aonline resource
_bcr
_2rdacarrier
490 1 _aMemoirs of the American Mathematical Society ;
_vv.138
505 0 _aIntro -- Contents -- Chapter 0. Introduction -- Chapter 1. The constructions of L[sub(p)]-spaces -- Chapter 2. Isomorphic properties of (p, 2)…sums and the spaces R[sup(α)sub(p)] -- Chapter 3. Isomorphic classification of R[sup(α)sub(p)], α &lt -- w1 -- Chapter 4. Isomorphism from X[sub(p)] ⊗ X[sub(p)] into (p, 2)…sums -- Chapter 5. Selection of bases in X[sub(p)] ⊗ X[sub(p)] -- Chapter 6. X[sub(p)] ⊗ X[sub(p)]…preserving operators on X[sub(p)] ⊗ X[sub(p)] -- Chapter 7. Isomorphisms of Xp ⊗ Xp onto complemented subspaces of (p, 2)…sums -- Chapter 8. X[sub(p)] ⊗ X[sub(p)] is not in the scale R[sup(α)][sub(p)], α &lt -- w1 -- Chapter 9. Final remarks and open problems -- Bibliography.
588 _aDescription based on publisher supplied metadata and other sources.
590 _aElectronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2024. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
650 0 _aLp spaces.
650 0 _aTensor products.
655 4 _aElectronic books.
776 0 8 _iPrint version:
_aAlspach, Dale E.
_tTensor products and independent sums of Lp-spaces, 1<p<[infinity]
_dProvidence : American Mathematical Society,c1999
_z9780821809617
797 2 _aProQuest (Firm)
830 0 _aMemoirs of the American Mathematical Society
856 4 0 _uhttps://ebookcentral.proquest.com/lib/orpp/detail.action?docID=3114389
_zClick to View
999 _c69884
_d69884