000 03581nam a22004573i 4500
001 EBC3114380
003 MiAaPQ
005 20240729124606.0
006 m o d |
007 cr cnu||||||||
008 240724s2001 xx o ||||0 eng d
020 _a9781470403171
_q(electronic bk.)
020 _z9780821827215
035 _a(MiAaPQ)EBC3114380
035 _a(Au-PeEL)EBL3114380
035 _a(CaPaEBR)ebr11041158
035 _a(OCoLC)922982091
040 _aMiAaPQ
_beng
_erda
_epn
_cMiAaPQ
_dMiAaPQ
050 4 _aQA171.5 -- .C37 2001eb
082 0 _a510 s;511.3/3
100 1 _aCarbone, Lisa.
245 1 0 _aNon-Uniform Lattices on Uniform Trees.
250 _a1st ed.
264 1 _aProvidence :
_bAmerican Mathematical Society,
_c2001.
264 4 _c©2001.
300 _a1 online resource (146 pages)
336 _atext
_btxt
_2rdacontent
337 _acomputer
_bc
_2rdamedia
338 _aonline resource
_bcr
_2rdacarrier
490 1 _aMemoirs of the American Mathematical Society ;
_vv.152
505 0 _aIntro -- Contents -- 0. Introduction -- 1. Graphs of groups, tree actions and edge-indexed graphs -- 1.1 Graphs of groups -- 1.2 Group actions on trees and quotient graphs of groups -- 1.3 Edge-indexed graphs and their groupings -- 1.4 Existence of finite groupings -- 2. Aut(X) and its discrete subgroups -- 2.1 Tree lattices -- 2.2 The group G[sub(H)] of deck transformations -- 2.3 Constructing tree lattices -- 3. Existence of tree lattices -- 3.1 Locally compact groups and their lattices -- 3.2 Lattice Existence Theorem -- 3.3 Existence of non-uniform lattices on uniform trees -- 3.4 Existence of non-uniform coverings -- 4. Non-uniform coverings of indexed graphs with an arithmetic bridge -- 4.1 Geometric and arithmetic bridges in indexed graphs -- 4.2 Changing the ramification factor of an arithmetic bridge -- 4.3 Gluing unimodular subgraphs along connected intersections -- 4.4 Open fanning of arithmetic bridges -- 4.5 Indexed topological coverings -- 4.6 Step 1 - Schematic diagram -- 4.7 Step 2 - Construct topological covering -- 4.8 Step 3 - Change the ramification factor -- 4.9 Step 4 - Construct rectangles -- 4.10 Step 5 - Glue rectangles iteratively -- 4.11 Step 6 - Adjoin bridges -- 4.12 Step 7 - Multiple open fanning -- 4.13 Edge with a common factor implies non-uniform covering -- 5. Non-uniform coverings of indexed graphs with a separating edge -- 6. Non-uniform coverings of indexed graphs with a ramified loop -- 7. Eliminating multiple edges -- 7.1 Simplification of a graph with no loops -- 7.2 Graphs with multiplicities -- 7.3 Reduced factorization of an indexed graph -- 7.4 Canonical simplification of a unimodular indexed graph with no loops -- 8. Existence of arithmetic bridges -- 8.1 Unramified Loops -- 8.2 Completion -- 8.3 Suspension -- 8.4 Restriction -- Bibliography.
588 _aDescription based on publisher supplied metadata and other sources.
590 _aElectronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2024. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
650 0 _aLattice theory.
650 0 _aTrees (Graph theory).
655 4 _aElectronic books.
776 0 8 _iPrint version:
_aCarbone, Lisa
_tNon-Uniform Lattices on Uniform Trees
_dProvidence : American Mathematical Society,c2001
_z9780821827215
797 2 _aProQuest (Firm)
830 0 _aMemoirs of the American Mathematical Society
856 4 0 _uhttps://ebookcentral.proquest.com/lib/orpp/detail.action?docID=3114380
_zClick to View
999 _c69875
_d69875