000 02747nam a22004693i 4500
001 EBC3114358
003 MiAaPQ
005 20240729124605.0
006 m o d |
007 cr cnu||||||||
008 240724s2002 xx o ||||0 eng d
020 _a9781470403331
_q(electronic bk.)
020 _z9780821827680
035 _a(MiAaPQ)EBC3114358
035 _a(Au-PeEL)EBL3114358
035 _a(CaPaEBR)ebr11041136
035 _a(OCoLC)922981959
040 _aMiAaPQ
_beng
_erda
_epn
_cMiAaPQ
_dMiAaPQ
050 4 _aQA274 -- .D87 2002eb
082 0 _a510 s;519.2
100 1 _aDurrett, Rick.
245 1 0 _aMutual Invadability Implies Coexistence in Spatial Models.
250 _a1st ed.
264 1 _aProvidence :
_bAmerican Mathematical Society,
_c2002.
264 4 _c©2002.
300 _a1 online resource (133 pages)
336 _atext
_btxt
_2rdacontent
337 _acomputer
_bc
_2rdamedia
338 _aonline resource
_bcr
_2rdacarrier
490 1 _aMemoirs of the American Mathematical Society ;
_vv.156
505 0 _aIntro -- Contents -- Introduction -- Example 1. Predator-prey models -- Example 2. Epidemic models -- 1. Perturbation of one-dimensional systems -- 2. Two-species Examples -- Example 2.1. Linear competition with exclusion -- Example 2.2. Two-stage contact process -- Example 2.3. Diploid genetics -- Example 2.4. One-dimensional systems -- Example 2.5. Linear competition without exclusion -- 3. Lower bounding lemmas for PDE -- 4. Perturbation of higher-dimensional systems -- 5. Lyapunov functions for Lotka Volterra systems -- 6. Three species linear competion models -- 7. Three species predator-prey systems -- Example 7.1. Two-prey, one-predator model -- Example 7.2. Three species food chain -- Example 7.3. Two-predator, one-prey model -- Example 7.4. Two infection model -- 8. Some asymptotic results for our ODE and PDE -- A List of the Invadability Conditions -- References.
588 _aDescription based on publisher supplied metadata and other sources.
590 _aElectronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2024. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
650 0 _aStochastic processes.
650 0 _aReaction-diffusion equations.
650 0 _aBiology -- Mathematical models.
655 4 _aElectronic books.
776 0 8 _iPrint version:
_aDurrett, Rick
_tMutual Invadability Implies Coexistence in Spatial Models
_dProvidence : American Mathematical Society,c2002
_z9780821827680
797 2 _aProQuest (Firm)
830 0 _aMemoirs of the American Mathematical Society
856 4 0 _uhttps://ebookcentral.proquest.com/lib/orpp/detail.action?docID=3114358
_zClick to View
999 _c69853
_d69853