000 | 03314nam a22004813i 4500 | ||
---|---|---|---|
001 | EBC3114314 | ||
003 | MiAaPQ | ||
005 | 20240729124605.0 | ||
006 | m o d | | ||
007 | cr cnu|||||||| | ||
008 | 240724s2015 xx o ||||0 eng d | ||
020 |
_a9781470419684 _q(electronic bk.) |
||
020 | _z9781470409883 | ||
035 | _a(MiAaPQ)EBC3114314 | ||
035 | _a(Au-PeEL)EBL3114314 | ||
035 | _a(CaPaEBR)ebr11040318 | ||
035 | _a(OCoLC)922981910 | ||
040 |
_aMiAaPQ _beng _erda _epn _cMiAaPQ _dMiAaPQ |
||
050 | 4 | _aQA612.36 -- .F754 2014eb | |
082 | 0 | _a514/.224 | |
100 | 1 | _aFriedman, Joel. | |
245 | 1 | 0 | _aSheaves on Graphs, Their Homological Invariants, and a Proof of the Hanna Neumann Conjecture. |
250 | _a1st ed. | ||
264 | 1 |
_aProvidence, RI : _bAmerican Mathematical Society, _c2015. |
|
264 | 4 | _c©2014. | |
300 | _a1 online resource (124 pages) | ||
336 |
_atext _btxt _2rdacontent |
||
337 |
_acomputer _bc _2rdamedia |
||
338 |
_aonline resource _bcr _2rdacarrier |
||
490 | 1 |
_aMemoirs of the American Mathematical Society ; _vv.233 |
|
505 | 0 | _aCover -- Title page -- Preface -- Introduction -- Chapter 1. Foundations of Sheaves on Graphs and Their Homological Invariants -- 1.1. Introduction -- 1.2. Basic Definitions and Main Results -- 1.3. Galois and Covering Theory -- 1.4. Sheaf Theory and Homology -- 1.5. Twisted Cohomology -- 1.6. Maximum Excess and Supermodularity -- 1.7. ℎ₁^{ } and the Universal Abelian Covering -- 1.8. Proof of Theorem 1.10 -- 1.9. Concluding Remarks -- Chapter 2. The Hanna Neumann Conjecture -- 2.1. Introduction -- 2.2. The Strengthened Hanna Neumann Conjecture -- 2.3. Graph Theoretic Formulation of the SHNC -- 2.4. Galois and Covering Theory in the SHNC -- 2.5. -kernels -- 2.6. Symmetry and Algebra of the Excess -- 2.7. Variability of -th Power Kernels -- 2.8. Proof of the SHNC -- 2.9. Concluding Remarks -- Appendix A. A Direct View of -Kernels -- Appendix B. Joel Friedman's Proof of the strengthened Hanna Neumann conjecture by Warren Dicks -- B.1. Sheaves on graphs -- B.2. Free groups and graphs -- B.3. The strengthened Hanna Neumann conjecture -- Bibliography -- Back Cover. | |
520 | _aIn this paper the author establishes some foundations regarding sheaves of vector spaces on graphs and their invariants, such as homology groups and their limits. He then uses these ideas to prove the Hanna Neumann Conjecture of the 1950s; in fact, he proves a strengthened form of the conjecture. | ||
588 | _aDescription based on publisher supplied metadata and other sources. | ||
590 | _aElectronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2024. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries. | ||
650 | 0 | _aSheaf theory. | |
650 | 0 | _aVector spaces. | |
650 | 0 | _aVector analysis. | |
655 | 4 | _aElectronic books. | |
776 | 0 | 8 |
_iPrint version: _aFriedman, Joel _tSheaves on Graphs, Their Homological Invariants, and a Proof of the Hanna Neumann Conjecture _dProvidence, RI : American Mathematical Society,c2015 _z9781470409883 |
797 | 2 | _aProQuest (Firm) | |
830 | 0 | _aMemoirs of the American Mathematical Society | |
856 | 4 | 0 |
_uhttps://ebookcentral.proquest.com/lib/orpp/detail.action?docID=3114314 _zClick to View |
999 |
_c69826 _d69826 |