000 03314nam a22004813i 4500
001 EBC3114314
003 MiAaPQ
005 20240729124605.0
006 m o d |
007 cr cnu||||||||
008 240724s2015 xx o ||||0 eng d
020 _a9781470419684
_q(electronic bk.)
020 _z9781470409883
035 _a(MiAaPQ)EBC3114314
035 _a(Au-PeEL)EBL3114314
035 _a(CaPaEBR)ebr11040318
035 _a(OCoLC)922981910
040 _aMiAaPQ
_beng
_erda
_epn
_cMiAaPQ
_dMiAaPQ
050 4 _aQA612.36 -- .F754 2014eb
082 0 _a514/.224
100 1 _aFriedman, Joel.
245 1 0 _aSheaves on Graphs, Their Homological Invariants, and a Proof of the Hanna Neumann Conjecture.
250 _a1st ed.
264 1 _aProvidence, RI :
_bAmerican Mathematical Society,
_c2015.
264 4 _c©2014.
300 _a1 online resource (124 pages)
336 _atext
_btxt
_2rdacontent
337 _acomputer
_bc
_2rdamedia
338 _aonline resource
_bcr
_2rdacarrier
490 1 _aMemoirs of the American Mathematical Society ;
_vv.233
505 0 _aCover -- Title page -- Preface -- Introduction -- Chapter 1. Foundations of Sheaves on Graphs and Their Homological Invariants -- 1.1. Introduction -- 1.2. Basic Definitions and Main Results -- 1.3. Galois and Covering Theory -- 1.4. Sheaf Theory and Homology -- 1.5. Twisted Cohomology -- 1.6. Maximum Excess and Supermodularity -- 1.7. ℎ₁^{ } and the Universal Abelian Covering -- 1.8. Proof of Theorem 1.10 -- 1.9. Concluding Remarks -- Chapter 2. The Hanna Neumann Conjecture -- 2.1. Introduction -- 2.2. The Strengthened Hanna Neumann Conjecture -- 2.3. Graph Theoretic Formulation of the SHNC -- 2.4. Galois and Covering Theory in the SHNC -- 2.5. -kernels -- 2.6. Symmetry and Algebra of the Excess -- 2.7. Variability of -th Power Kernels -- 2.8. Proof of the SHNC -- 2.9. Concluding Remarks -- Appendix A. A Direct View of -Kernels -- Appendix B. Joel Friedman's Proof of the strengthened Hanna Neumann conjecture by Warren Dicks -- B.1. Sheaves on graphs -- B.2. Free groups and graphs -- B.3. The strengthened Hanna Neumann conjecture -- Bibliography -- Back Cover.
520 _aIn this paper the author establishes some foundations regarding sheaves of vector spaces on graphs and their invariants, such as homology groups and their limits. He then uses these ideas to prove the Hanna Neumann Conjecture of the 1950s; in fact, he proves a strengthened form of the conjecture.
588 _aDescription based on publisher supplied metadata and other sources.
590 _aElectronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2024. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
650 0 _aSheaf theory.
650 0 _aVector spaces.
650 0 _aVector analysis.
655 4 _aElectronic books.
776 0 8 _iPrint version:
_aFriedman, Joel
_tSheaves on Graphs, Their Homological Invariants, and a Proof of the Hanna Neumann Conjecture
_dProvidence, RI : American Mathematical Society,c2015
_z9781470409883
797 2 _aProQuest (Firm)
830 0 _aMemoirs of the American Mathematical Society
856 4 0 _uhttps://ebookcentral.proquest.com/lib/orpp/detail.action?docID=3114314
_zClick to View
999 _c69826
_d69826