000 04611nam a22005053i 4500
001 EBC3114298
003 MiAaPQ
005 20240729124605.0
006 m o d |
007 cr cnu||||||||
008 240724s2015 xx o ||||0 eng d
020 _a9781470420314
_q(electronic bk.)
020 _z9781470409609
035 _a(MiAaPQ)EBC3114298
035 _a(Au-PeEL)EBL3114298
035 _a(CaPaEBR)ebr11040302
035 _a(OCoLC)922982042
040 _aMiAaPQ
_beng
_erda
_epn
_cMiAaPQ
_dMiAaPQ
050 4 _aQA247 -- .H577 2014eb
082 0 _a512/.482
100 1 _aHiss, Gerhard.
245 1 0 _aImprimitive Irreducible Modules for Finite Quasisimple Groups.
250 _a1st ed.
264 1 _aProvidence, RI :
_bAmerican Mathematical Society,
_c2015.
264 4 _c©2014.
300 _a1 online resource (126 pages)
336 _atext
_btxt
_2rdacontent
337 _acomputer
_bc
_2rdamedia
338 _aonline resource
_bcr
_2rdacarrier
490 1 _aMemoirs of the American Mathematical Society ;
_vv.234
505 0 _aCover -- Title page -- Acknowledgements -- Chapter 1. Introduction -- Chapter 2. Generalities -- 2.1. Comments on the notation -- 2.2. Conditions for primitivity -- 2.3. Some results on linear groups of small degree -- 2.4. Reduction modulo ℓ and imprimitivity -- 2.5. A result on polynomials -- Chapter 3. Sporadic Groups and the Tits Group -- Chapter 4. Alternating Groups -- Chapter 5. Exceptional Schur Multipliers and Exceptional Isomorphisms -- 5.1. Description of the tables -- 5.2. The proofs -- Chapter 6. Groups of Lie type: Induction from non-parabolic subgroups -- 6.1. Outline of the strategy -- 6.2. The classical groups of Lie type -- 6.3. The exceptional groups of Lie type -- Chapter 7. Groups of Lie type: Induction from parabolic subgroups -- 7.1. Harish-Chandra series -- 7.2. Lusztig series -- 7.3. Asymptotics -- Chapter 8. Groups of Lie type: char( )=0 -- 8.1. Some results on Weyl groups -- 8.2. Harish-Chandra series -- 8.3. Lusztig series -- Chapter 9. Classical groups: ℎ ( )=0 -- 9.1. The groups -- 9.2. Harish-Chandra series -- 9.3. Lusztig series -- 9.4. Examples for the restriction to commutator subgroups -- Chapter 10. Exceptional groups -- 10.1. The exceptional groups of type and -- 10.2. Explicit results on some exceptional groups -- Bibliography -- Back Cover.
520 _aMotivated by the maximal subgroup problem of the finite classical groups the authors begin the classification of imprimitive irreducible modules of finite quasisimple groups over algebraically closed fields K. A module of a group G over K is imprimitive, if it is induced from a module of a proper subgroup of G. The authors obtain their strongest results when {\rm char}(K) = 0, although much of their analysis carries over into positive characteristic. If G is a finite quasisimple group of Lie type, they prove that an imprimitive irreducible KG-module is Harish-Chandra induced. This being true for \mbox{\rm char}(K) different from the defining characteristic of G, the authors specialize to the case {\rm char}(K) = 0 and apply Harish-Chandra philosophy to classify irreducible Harish-Chandra induced modules in terms of Harish-Chandra series, as well as in terms of Lusztig series. The authors determine the asymptotic proportion of the irreducible imprimitive KG-modules, when G runs through a series groups of fixed (twisted) Lie type. One of the surprising outcomes of their investigations is the fact that these proportions tend to 1, if the Lie rank of the groups tends to infinity. For exceptional groups G of Lie type of small rank, and for sporadic groups G, the authors determine all irreducible imprimitive KG-modules for arbitrary characteristic of K.
588 _aDescription based on publisher supplied metadata and other sources.
590 _aElectronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2024. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
650 0 _aAlgebraic fields.
650 0 _aFinite groups.
650 0 _aSemisimple Lie groups.
655 4 _aElectronic books.
700 1 _aHusen, William J.
700 1 _aMagaard, Kay.
776 0 8 _iPrint version:
_aHiss, Gerhard
_tImprimitive Irreducible Modules for Finite Quasisimple Groups
_dProvidence, RI : American Mathematical Society,c2015
_z9781470409609
797 2 _aProQuest (Firm)
830 0 _aMemoirs of the American Mathematical Society
856 4 0 _uhttps://ebookcentral.proquest.com/lib/orpp/detail.action?docID=3114298
_zClick to View
999 _c69817
_d69817