000 03822nam a22004813i 4500
001 EBC3114270
003 MiAaPQ
005 20240729124604.0
006 m o d |
007 cr cnu||||||||
008 240724s2009 xx o ||||0 eng d
020 _a9781470405281
_q(electronic bk.)
020 _z9780821842591
035 _a(MiAaPQ)EBC3114270
035 _a(Au-PeEL)EBL3114270
035 _a(CaPaEBR)ebr11039889
035 _a(OCoLC)922981821
040 _aMiAaPQ
_beng
_erda
_epn
_cMiAaPQ
_dMiAaPQ
050 4 _aQA273.6 -- .B376 2009eb
082 0 _a519.2/4
100 1 _aBarbe, Ph.
245 1 0 _aAsymptotic Expansions for Infinite Weighted Convolutions of Heavy Tail Distributions and Applications.
250 _a1st ed.
264 1 _aProvidence :
_bAmerican Mathematical Society,
_c2009.
264 4 _c©2009.
300 _a1 online resource (133 pages)
336 _atext
_btxt
_2rdacontent
337 _acomputer
_bc
_2rdamedia
338 _aonline resource
_bcr
_2rdacarrier
490 1 _aMemoirs of the American Mathematical Society ;
_vv.197
505 0 _aIntro -- Contents -- 1. Introduction -- 1.1. Prolegomenom -- 1.2. Mathematical overview and heuristics -- 2. Main result -- 2.1. Some notation -- 2.2. Asymptotic scales -- 2.3. The Laplace characters -- 2.4. Smoothly varying functions of finite order -- 2.5. Asymptotic expansion for in finite weighted convolution -- 3. Implementing the expansion -- 3.1. How many terms are in the expansion? -- 3.2. [sub(*)]-Asymptotic scales and functions of class m -- 3.3. Tail calculus: From Laplace characters to linear algebra -- 3.4. Some examples -- 3.5. Two terms expansion and second order regular variation -- 3.6. Some open questions -- 4. Applications -- 4.1. ARMA models -- 4.2. Tail index estimation -- 4.3. Randomly weighted sums -- 4.4. Compound sums -- 4.5. Queueing theory -- 4.6. Branching processes -- 4.7. Infinitely divisible distributions -- 4.8. Implicit transient renewal equation and iterative systems -- 5. Preparing the proof -- 5.1. Properties of Laplace characters -- 5.2. Properties of smoothly varying functions of finite order -- 6. Proof in the positive case -- 6.1. Decomposition of the convolution into integral and multiplication operators -- 6.2. Organizing the proof -- 6.3. Regular variation and basic tail estimates -- 6.4. The fundamental estimate -- 6.5. Basic lemmas -- 6.6. Inductions -- 6.7. Conclusion -- 7. Removing the sign restriction on the random variables -- 7.1. Elementary properties of U[sub(H)] -- 7.2. Basic expansion of U[sub(H)] -- 7.3. A technical lemma -- 7.4. Conditional expansion and removing conditioning -- 8. Removing the sign restriction on the constants -- 8.1. Neglecting terms involving the multiplication operators -- 8.2. Substituting H[sup((k))] and G[sup((k))] by their expansions -- 9. Removing the smoothness restriction -- Appendix. Maple code -- Bibliography.
588 _aDescription based on publisher supplied metadata and other sources.
590 _aElectronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2024. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
650 0 _aDistribution (Probability theory) -- Mathematical models.
650 0 _aAsymptotic expansions.
650 0 _aStochastic processes.
655 4 _aElectronic books.
700 1 _aMcCormick, W.P.
776 0 8 _iPrint version:
_aBarbe, Ph.
_tAsymptotic Expansions for Infinite Weighted Convolutions of Heavy Tail Distributions and Applications
_dProvidence : American Mathematical Society,c2009
_z9780821842591
797 2 _aProQuest (Firm)
830 0 _aMemoirs of the American Mathematical Society
856 4 0 _uhttps://ebookcentral.proquest.com/lib/orpp/detail.action?docID=3114270
_zClick to View
999 _c69801
_d69801