000 | 03822nam a22004813i 4500 | ||
---|---|---|---|
001 | EBC3114270 | ||
003 | MiAaPQ | ||
005 | 20240729124604.0 | ||
006 | m o d | | ||
007 | cr cnu|||||||| | ||
008 | 240724s2009 xx o ||||0 eng d | ||
020 |
_a9781470405281 _q(electronic bk.) |
||
020 | _z9780821842591 | ||
035 | _a(MiAaPQ)EBC3114270 | ||
035 | _a(Au-PeEL)EBL3114270 | ||
035 | _a(CaPaEBR)ebr11039889 | ||
035 | _a(OCoLC)922981821 | ||
040 |
_aMiAaPQ _beng _erda _epn _cMiAaPQ _dMiAaPQ |
||
050 | 4 | _aQA273.6 -- .B376 2009eb | |
082 | 0 | _a519.2/4 | |
100 | 1 | _aBarbe, Ph. | |
245 | 1 | 0 | _aAsymptotic Expansions for Infinite Weighted Convolutions of Heavy Tail Distributions and Applications. |
250 | _a1st ed. | ||
264 | 1 |
_aProvidence : _bAmerican Mathematical Society, _c2009. |
|
264 | 4 | _c©2009. | |
300 | _a1 online resource (133 pages) | ||
336 |
_atext _btxt _2rdacontent |
||
337 |
_acomputer _bc _2rdamedia |
||
338 |
_aonline resource _bcr _2rdacarrier |
||
490 | 1 |
_aMemoirs of the American Mathematical Society ; _vv.197 |
|
505 | 0 | _aIntro -- Contents -- 1. Introduction -- 1.1. Prolegomenom -- 1.2. Mathematical overview and heuristics -- 2. Main result -- 2.1. Some notation -- 2.2. Asymptotic scales -- 2.3. The Laplace characters -- 2.4. Smoothly varying functions of finite order -- 2.5. Asymptotic expansion for in finite weighted convolution -- 3. Implementing the expansion -- 3.1. How many terms are in the expansion? -- 3.2. [sub(*)]-Asymptotic scales and functions of class m -- 3.3. Tail calculus: From Laplace characters to linear algebra -- 3.4. Some examples -- 3.5. Two terms expansion and second order regular variation -- 3.6. Some open questions -- 4. Applications -- 4.1. ARMA models -- 4.2. Tail index estimation -- 4.3. Randomly weighted sums -- 4.4. Compound sums -- 4.5. Queueing theory -- 4.6. Branching processes -- 4.7. Infinitely divisible distributions -- 4.8. Implicit transient renewal equation and iterative systems -- 5. Preparing the proof -- 5.1. Properties of Laplace characters -- 5.2. Properties of smoothly varying functions of finite order -- 6. Proof in the positive case -- 6.1. Decomposition of the convolution into integral and multiplication operators -- 6.2. Organizing the proof -- 6.3. Regular variation and basic tail estimates -- 6.4. The fundamental estimate -- 6.5. Basic lemmas -- 6.6. Inductions -- 6.7. Conclusion -- 7. Removing the sign restriction on the random variables -- 7.1. Elementary properties of U[sub(H)] -- 7.2. Basic expansion of U[sub(H)] -- 7.3. A technical lemma -- 7.4. Conditional expansion and removing conditioning -- 8. Removing the sign restriction on the constants -- 8.1. Neglecting terms involving the multiplication operators -- 8.2. Substituting H[sup((k))] and G[sup((k))] by their expansions -- 9. Removing the smoothness restriction -- Appendix. Maple code -- Bibliography. | |
588 | _aDescription based on publisher supplied metadata and other sources. | ||
590 | _aElectronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2024. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries. | ||
650 | 0 | _aDistribution (Probability theory) -- Mathematical models. | |
650 | 0 | _aAsymptotic expansions. | |
650 | 0 | _aStochastic processes. | |
655 | 4 | _aElectronic books. | |
700 | 1 | _aMcCormick, W.P. | |
776 | 0 | 8 |
_iPrint version: _aBarbe, Ph. _tAsymptotic Expansions for Infinite Weighted Convolutions of Heavy Tail Distributions and Applications _dProvidence : American Mathematical Society,c2009 _z9780821842591 |
797 | 2 | _aProQuest (Firm) | |
830 | 0 | _aMemoirs of the American Mathematical Society | |
856 | 4 | 0 |
_uhttps://ebookcentral.proquest.com/lib/orpp/detail.action?docID=3114270 _zClick to View |
999 |
_c69801 _d69801 |