000 04082nam a22005053i 4500
001 EBC3114261
003 MiAaPQ
005 20240729124604.0
006 m o d |
007 cr cnu||||||||
008 240724s2010 xx o ||||0 eng d
020 _a9781470405915
_q(electronic bk.)
020 _z9780821846582
035 _a(MiAaPQ)EBC3114261
035 _a(Au-PeEL)EBL3114261
035 _a(CaPaEBR)ebr11039880
035 _a(OCoLC)922981972
040 _aMiAaPQ
_beng
_erda
_epn
_cMiAaPQ
_dMiAaPQ
050 4 _aQA3 -- .A345 2010eb
082 0 _a516/.4
100 1 _aLam, Thomas.
245 1 0 _aAffine Insertion and Pieri Rules for the Affine Grassmannian.
250 _a1st ed.
264 1 _aProvidence :
_bAmerican Mathematical Society,
_c2010.
264 4 _c©2010.
300 _a1 online resource (103 pages)
336 _atext
_btxt
_2rdacontent
337 _acomputer
_bc
_2rdamedia
338 _aonline resource
_bcr
_2rdacarrier
490 1 _aMemoirs of the American Mathematical Society ;
_vv.208
505 0 _aIntro -- Contents -- Introduction -- Chapter 1. Schubert Bases of Gr and Symmetric Functions -- 1.1. Symmetric functions -- 1.2. Schubert bases of Gr -- 1.3. Schubert basis of the affine flag variety -- Chapter 2. Strong Tableaux -- 2.1. n as a Coxeter group -- 2.2. Fixing a maximal parabolic subgroup -- 2.3. Strong order and strong tableaux -- 2.4. Strong Schur functions -- Chapter 3. Weak Tableaux -- 3.1. Cyclically decreasing permutations and weak tableaux -- 3.2. Weak Schur functions -- 3.3. Properties of weak strips -- 3.4. Commutation of weak strips and strong covers -- Chapter 4. Affine Insertion and Affine Pieri -- 4.1. The local rule u,v -- 4.2. The affine insertion bijection u,v -- 4.3. Pieri rules for the affine Grassmannian -- 4.4. Conjectured Pieri rule for the affine flag variety -- 4.5. Geometric interpretation of strong Schur functions -- Chapter 5. The Local Rule u,v -- 5.1. Internal insertion at a marked strong cover -- 5.2. Definition of u,v -- 5.3. Proofs for the local rule -- Chapter 6. Reverse Local Rule -- 6.1. Reverse insertion at a cover -- 6.2. The reverse local rule -- 6.3. Proofs for the reverse insertion -- Chapter 7. Bijectivity -- 7.1. External insertion -- 7.2. Case A (commuting case) -- 7.3. Case B (bumping case) -- 7.4. Case C (replacement bump) -- Chapter 8. Grassmannian Elements, Cores, and Bounded Partitions -- 8.1. Translation elements -- 8.2. The action of n on partitions -- 8.3. Cores and the coroot lattice -- 8.4. Grassmannian elements and the coroot lattice -- 8.5. Bijection from cores to bounded partitions -- 8.6. k-conjugate -- 8.7. From Grassmannian elements to bounded partitions -- Chapter 9. Strong and Weak Tableaux Using Cores -- 9.1. Weak tableaux on cores are k-tableaux -- 9.2. Strong tableaux on cores -- 9.3. Monomial expansion of t-dependent k-Schur functions.
505 8 _a9.4. Enumeration of standard strong and weak tableaux -- Chapter 10. Affine Insertion in Terms of Cores -- 10.1. Internal insertion for cores -- 10.2. External insertion for cores (Case X) -- 10.3. An example -- 10.4. Standard case -- 10.5. Coincidence with RSK as n -- 10.6. The bijection for n = 3 and m = 4 -- Bibliography.
588 _aDescription based on publisher supplied metadata and other sources.
590 _aElectronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2024. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
650 0 _aGeometry, Affine.
650 0 _aCombinatorial analysis.
655 4 _aElectronic books.
700 1 _aLapointe, Luc.
700 1 _aMorse, Jennifer.
700 1 _aShimozono, Mark.
776 0 8 _iPrint version:
_aLam, Thomas
_tAffine Insertion and Pieri Rules for the Affine Grassmannian
_dProvidence : American Mathematical Society,c2010
_z9780821846582
797 2 _aProQuest (Firm)
830 0 _aMemoirs of the American Mathematical Society
856 4 0 _uhttps://ebookcentral.proquest.com/lib/orpp/detail.action?docID=3114261
_zClick to View
999 _c69792
_d69792