000 03485nam a22005053i 4500
001 EBC3114251
003 MiAaPQ
005 20240729124604.0
006 m o d |
007 cr cnu||||||||
008 240724s2006 xx o ||||0 eng d
020 _a9781470404598
_q(electronic bk.)
020 _z9780821838860
035 _a(MiAaPQ)EBC3114251
035 _a(Au-PeEL)EBL3114251
035 _a(CaPaEBR)ebr11039870
035 _a(OCoLC)922981785
040 _aMiAaPQ
_beng
_erda
_epn
_cMiAaPQ
_dMiAaPQ
050 4 _aQA613.8 -- .K37 2006eb
082 0 _a510 s;512/.55
100 1 _aKashina, Yevgenia.
245 1 0 _aOn Higher Frobenius-Schur Indicators.
250 _a1st ed.
264 1 _aProvidence :
_bAmerican Mathematical Society,
_c2006.
264 4 _c©2006.
300 _a1 online resource (82 pages)
336 _atext
_btxt
_2rdacontent
337 _acomputer
_bc
_2rdamedia
338 _aonline resource
_bcr
_2rdacarrier
490 1 _aMemoirs of the American Mathematical Society ;
_vv.181
505 0 _aIntro -- Contents -- Introduction -- Chapter 1. The Calculus of Sweedler Powers -- 1.1. Monotone maps -- 1.2. The union of the symmetric groups -- 1.3. Bialgebras -- 1.4. A monoid -- 1.5. Permutations from sequences -- 1.6. Sweedler powers -- Chapter 2. Frobenius-Schur Indicators -- 2.1. Central Sweedler powers -- 2.2. The coproduct of the Sweedler powers -- 2.3. The first formula for the Frobenius-Schur indicators -- 2.4. The Frobenius-Schur theorem -- 2.5. Frobenius-Schur indicators of the regular representation -- Chapter 3. The Exponent -- 3.1. The exponent -- 3.2. The second formula for the Frobenius-Schur indicators -- 3.3. Sweedler powers of the integral -- 3.4. Cauchy's theorem -- Chapter 4. The Order -- 4.1. Order and multiplicity -- 4.2. The divisibility theorem -- 4.3. An example -- 4.4. The dimension of the simple modules -- Chapter 5. The Index -- 5.1. Indecomposable matrices -- 5.2. The normal form -- 5.3. The Perron-Frobenius theorem -- 5.4. The index formula -- Chapter 6. The Drinfel'd Double -- 6.1. The Drinfel'd double -- 6.2. Factorizability -- 6.3. The center of the character ring -- 6.4. The third formula for the Frobenius-Schur indicators -- Chapter 7. Examples -- 7.1. A class of extensions -- 7.2. The coefficients -- 7.3. Sweedler powers of the integral -- 7.4. The simple modules -- 7.5. Nonintegral indicators -- 7.6. Noncocommutative Sweedler powers -- 7.7. Noncentral Sweedler powers -- Bibliography -- Subject Index -- A -- B -- C -- D -- E -- F -- G -- H -- I -- L -- M -- N -- O -- P -- R -- S -- T -- U -- V -- W -- Symbol Index.
588 _aDescription based on publisher supplied metadata and other sources.
590 _aElectronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2024. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
650 0 _aHopf algebras.
650 0 _aLie superalgebras.
650 0 _aFrobenius algebras.
650 0 _aCauchy integrals.
655 4 _aElectronic books.
700 1 _aSommerhäuser, Yorck.
700 1 _aZhu, Yongchang.
776 0 8 _iPrint version:
_aKashina, Yevgenia
_tOn Higher Frobenius-Schur Indicators
_dProvidence : American Mathematical Society,c2006
_z9780821838860
797 2 _aProQuest (Firm)
830 0 _aMemoirs of the American Mathematical Society
856 4 0 _uhttps://ebookcentral.proquest.com/lib/orpp/detail.action?docID=3114251
_zClick to View
999 _c69782
_d69782