000 | 04678nam a22005293i 4500 | ||
---|---|---|---|
001 | EBC3114232 | ||
003 | MiAaPQ | ||
005 | 20240729124603.0 | ||
006 | m o d | | ||
007 | cr cnu|||||||| | ||
008 | 240724s2006 xx o ||||0 eng d | ||
020 |
_a9781470404611 _q(electronic bk.) |
||
020 | _z9780821839119 | ||
035 | _a(MiAaPQ)EBC3114232 | ||
035 | _a(Au-PeEL)EBL3114232 | ||
035 | _a(CaPaEBR)ebr11039851 | ||
035 | _a(OCoLC)922981722 | ||
040 |
_aMiAaPQ _beng _erda _epn _cMiAaPQ _dMiAaPQ |
||
050 | 4 | _aQA403 -- .D36 2006eb | |
082 | 0 | _a510 s;515/.2433 | |
100 | 1 | _aDanielli, Donatella. | |
245 | 1 | 0 | _aNon-Doubling Ahlfors Measures, Perimeter Measures, and the Characterization of the Trace Spaces of Sobolev Functions in Carnot-Carathéodory Spaces. |
250 | _a1st ed. | ||
264 | 1 |
_aProvidence : _bAmerican Mathematical Society, _c2006. |
|
264 | 4 | _c©2006. | |
300 | _a1 online resource (138 pages) | ||
336 |
_atext _btxt _2rdacontent |
||
337 |
_acomputer _bc _2rdamedia |
||
338 |
_aonline resource _bcr _2rdacarrier |
||
490 | 1 |
_aMemoirs of the American Mathematical Society ; _vv.182 |
|
505 | 0 | _aIntro -- Contents -- Chapter 1. Introduction -- 1.1. Carnot-Carathéodory spaces -- 1.2. The Chow-Rashevsky's accessibility theorem and CC metrics -- 1.3. The Nagel-Stein-Wainger polynomial and the size of the CC balls -- Chapter 2. Carnot groups -- 2.1. Carnot groups of step 2 -- 2.2. The Kaplan mapping -- 2.3. Groups of Heisenberg type -- Chapter 3. The characteristic set -- 3.1. A result of Derridj on the size of the characteristic set -- 3.2. Some geometric examples -- 3.3. Non-characteristic manifolds -- 3.4. Manifolds with controlled characteristic set -- Chapter 4. X-variation, X-perimeter and surface measure -- 4.1. The structure of functions in BV[sub(X,loc)] -- 4.2. X-Caccioppoli sets -- 4.3. X-perimeter and the perimeter measure -- Chapter 5. Geometric estimates from above on CC balls for the perimeter measure -- 5.1. A fundamental estimate -- 5.2. The X-perimeter of a C[sup(1,1)] domain is an upper 1-Ahlfors measure -- Chapter 6. Geometric estimates from below on CC balls for the perimeter measure -- 6.1. The relative isoperimetric inequality and Theorem 6.1 -- 6.2. A basic geometric lemma -- 6.3. Further analysis for Hörmander vector fields of step 2 -- 6.4. Second proof of Theorem 6.1 -- 6.5. Failure of the 1-Ahlfors condition for the X-perimeter of C[sup(1,α)] domains -- Chapter 7. Fine differentiability properties of Sobolev functions -- 7.1. Poincaré inequality fractional integrals and improved representation formulas -- 7.2. Fine mapping properties of fractional integration on metric spaces -- 7.3. Differentiation with respect to an upper Ahlfors measure -- 7.4. Upper Ahlfors measures and Hausdorff measure -- Chapter 8. Embedding a Sobolev space into a Besov space with respect to an upper Ahlfors measure -- 8.1. Some results from harmonic analysis -- 8.2. Two simple growth-estimates. | |
505 | 8 | _a8.3. A key continuity estimate for a singular integral -- 8.4. The main theorem -- Chapter 9. The extension theorem for a Besov space with respect to a lower Ahlfors measure -- 9.1. Some auxiliary results -- 9.2. Proof of Theorem 9.1 -- Chapter 10. Traces on the boundary of (ε, δ) domains -- 10.1. The (ε, δ) condition is optimal for the existence of traces -- 10.2. Characterization of the traces on the boundary -- Chapter 11. The embedding of B[sup(p)][sub(β)](Ω, dμ) into L[sup(q)](Ω, dμ) -- Chapter 12. Returning to Carnot groups -- Chapter 13. The Neumann problem -- Chapter 14. The case of Lipschitz vector fields -- Bibliography. | |
588 | _aDescription based on publisher supplied metadata and other sources. | ||
590 | _aElectronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2024. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries. | ||
650 | 0 | _aHarmonic analysis. | |
650 | 0 | _aHomogeneous spaces. | |
650 | 0 | _aSobolev spaces. | |
650 | 0 | _aMeasure theory. | |
650 | 0 | _aDifferential equations, Partial. | |
655 | 4 | _aElectronic books. | |
700 | 1 | _aGarofalo, Nicola. | |
700 | 1 | _aNhieum, Duy-Minh. | |
776 | 0 | 8 |
_iPrint version: _aDanielli, Donatella _tNon-Doubling Ahlfors Measures, Perimeter Measures, and the Characterization of the Trace Spaces of Sobolev Functions in Carnot-Carathéodory Spaces _dProvidence : American Mathematical Society,c2006 _z9780821839119 |
797 | 2 | _aProQuest (Firm) | |
830 | 0 | _aMemoirs of the American Mathematical Society | |
856 | 4 | 0 |
_uhttps://ebookcentral.proquest.com/lib/orpp/detail.action?docID=3114232 _zClick to View |
999 |
_c69763 _d69763 |