000 04678nam a22005293i 4500
001 EBC3114232
003 MiAaPQ
005 20240729124603.0
006 m o d |
007 cr cnu||||||||
008 240724s2006 xx o ||||0 eng d
020 _a9781470404611
_q(electronic bk.)
020 _z9780821839119
035 _a(MiAaPQ)EBC3114232
035 _a(Au-PeEL)EBL3114232
035 _a(CaPaEBR)ebr11039851
035 _a(OCoLC)922981722
040 _aMiAaPQ
_beng
_erda
_epn
_cMiAaPQ
_dMiAaPQ
050 4 _aQA403 -- .D36 2006eb
082 0 _a510 s;515/.2433
100 1 _aDanielli, Donatella.
245 1 0 _aNon-Doubling Ahlfors Measures, Perimeter Measures, and the Characterization of the Trace Spaces of Sobolev Functions in Carnot-Carathéodory Spaces.
250 _a1st ed.
264 1 _aProvidence :
_bAmerican Mathematical Society,
_c2006.
264 4 _c©2006.
300 _a1 online resource (138 pages)
336 _atext
_btxt
_2rdacontent
337 _acomputer
_bc
_2rdamedia
338 _aonline resource
_bcr
_2rdacarrier
490 1 _aMemoirs of the American Mathematical Society ;
_vv.182
505 0 _aIntro -- Contents -- Chapter 1. Introduction -- 1.1. Carnot-Carathéodory spaces -- 1.2. The Chow-Rashevsky's accessibility theorem and CC metrics -- 1.3. The Nagel-Stein-Wainger polynomial and the size of the CC balls -- Chapter 2. Carnot groups -- 2.1. Carnot groups of step 2 -- 2.2. The Kaplan mapping -- 2.3. Groups of Heisenberg type -- Chapter 3. The characteristic set -- 3.1. A result of Derridj on the size of the characteristic set -- 3.2. Some geometric examples -- 3.3. Non-characteristic manifolds -- 3.4. Manifolds with controlled characteristic set -- Chapter 4. X-variation, X-perimeter and surface measure -- 4.1. The structure of functions in BV[sub(X,loc)] -- 4.2. X-Caccioppoli sets -- 4.3. X-perimeter and the perimeter measure -- Chapter 5. Geometric estimates from above on CC balls for the perimeter measure -- 5.1. A fundamental estimate -- 5.2. The X-perimeter of a C[sup(1,1)] domain is an upper 1-Ahlfors measure -- Chapter 6. Geometric estimates from below on CC balls for the perimeter measure -- 6.1. The relative isoperimetric inequality and Theorem 6.1 -- 6.2. A basic geometric lemma -- 6.3. Further analysis for Hörmander vector fields of step 2 -- 6.4. Second proof of Theorem 6.1 -- 6.5. Failure of the 1-Ahlfors condition for the X-perimeter of C[sup(1,α)] domains -- Chapter 7. Fine differentiability properties of Sobolev functions -- 7.1. Poincaré inequality fractional integrals and improved representation formulas -- 7.2. Fine mapping properties of fractional integration on metric spaces -- 7.3. Differentiation with respect to an upper Ahlfors measure -- 7.4. Upper Ahlfors measures and Hausdorff measure -- Chapter 8. Embedding a Sobolev space into a Besov space with respect to an upper Ahlfors measure -- 8.1. Some results from harmonic analysis -- 8.2. Two simple growth-estimates.
505 8 _a8.3. A key continuity estimate for a singular integral -- 8.4. The main theorem -- Chapter 9. The extension theorem for a Besov space with respect to a lower Ahlfors measure -- 9.1. Some auxiliary results -- 9.2. Proof of Theorem 9.1 -- Chapter 10. Traces on the boundary of (ε, δ) domains -- 10.1. The (ε, δ) condition is optimal for the existence of traces -- 10.2. Characterization of the traces on the boundary -- Chapter 11. The embedding of B[sup(p)][sub(β)](Ω, dμ) into L[sup(q)](Ω, dμ) -- Chapter 12. Returning to Carnot groups -- Chapter 13. The Neumann problem -- Chapter 14. The case of Lipschitz vector fields -- Bibliography.
588 _aDescription based on publisher supplied metadata and other sources.
590 _aElectronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2024. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
650 0 _aHarmonic analysis.
650 0 _aHomogeneous spaces.
650 0 _aSobolev spaces.
650 0 _aMeasure theory.
650 0 _aDifferential equations, Partial.
655 4 _aElectronic books.
700 1 _aGarofalo, Nicola.
700 1 _aNhieum, Duy-Minh.
776 0 8 _iPrint version:
_aDanielli, Donatella
_tNon-Doubling Ahlfors Measures, Perimeter Measures, and the Characterization of the Trace Spaces of Sobolev Functions in Carnot-Carathéodory Spaces
_dProvidence : American Mathematical Society,c2006
_z9780821839119
797 2 _aProQuest (Firm)
830 0 _aMemoirs of the American Mathematical Society
856 4 0 _uhttps://ebookcentral.proquest.com/lib/orpp/detail.action?docID=3114232
_zClick to View
999 _c69763
_d69763