000 | 03276nam a22004693i 4500 | ||
---|---|---|---|
001 | EBC3114208 | ||
003 | MiAaPQ | ||
005 | 20240729124603.0 | ||
006 | m o d | | ||
007 | cr cnu|||||||| | ||
008 | 240724s2006 xx o ||||0 eng d | ||
020 |
_a9781470404673 _q(electronic bk.) |
||
020 | _z9780821839133 | ||
035 | _a(MiAaPQ)EBC3114208 | ||
035 | _a(Au-PeEL)EBL3114208 | ||
035 | _a(CaPaEBR)ebr11039827 | ||
035 | _a(OCoLC)922981564 | ||
040 |
_aMiAaPQ _beng _erda _epn _cMiAaPQ _dMiAaPQ |
||
050 | 4 | _aQA601 -- .L83 2006eb | |
082 | 0 | _a510 s;516.3/62 | |
100 | 1 | _aLübke, M. | |
245 | 1 | 0 | _aUniversal Kobayashi-Hitchin Correspondence on Hermitian Manifolds. |
250 | _a1st ed. | ||
264 | 1 |
_aProvidence : _bAmerican Mathematical Society, _c2006. |
|
264 | 4 | _c©2006. | |
300 | _a1 online resource (112 pages) | ||
336 |
_atext _btxt _2rdacontent |
||
337 |
_acomputer _bc _2rdamedia |
||
338 |
_aonline resource _bcr _2rdacarrier |
||
490 | 1 |
_aMemoirs of the American Mathematical Society ; _vv.183 |
|
505 | 0 | _aIntro -- Contents -- Chapter 1. Introduction -- Chapter 2. The finite dimensional Kobayashi-Hitchin correspondence -- 2.1. Analytic Stability, Symplectic stability -- 2.2. The Continuity Method in the finite dimensional case -- 2.3. Maximal weight functions for linear and projective actions -- Chapter 3. A "universal" complex geometric classification problem -- 3.1. Oriented holomorphic pairs -- 3.2. The stability condition for universal oriented holomorphic pairs -- Chapter 4. Hermitian-Einstein pairs -- 4.1. The Hermitian-Einstein equation -- 4.2. Pairs which allow Hermitian-Einstein reductions are polystable -- Chapter 5. Polystable pairs allow Hermitian-Einstein reductions -- 5.1. The perturbed equation -- 5.2. A priori estimates for the solution s[sub(ε)] -- 5.3. Solving the equation (e[sub(ε)]) for ε ∈ ( 0,1] -- 5.4. Destabilizing the pair in the unbounded case -- Chapter 6. Examples and Applications -- 6.1. Oriented holomorphic principal bundles and oriented connections -- 6.2. Moduli spaces of oriented pairs -- 6.3. Non-abelian monopoles on Gauduchon surfaces -- Chapter 7. Appendix -- 7.1. Chern connections -- 7.2. Orbits of the adjoint action, sections in the adjoint bundle -- 7.3. Local maximal torus reductions of a K-bundle -- 7.4. Connection and maximal torus reductions -- 7.5. Analytic results -- 7.6. Weakly holomorphic parabolic reductions -- Bibliography. | |
588 | _aDescription based on publisher supplied metadata and other sources. | ||
590 | _aElectronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2024. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries. | ||
650 | 0 | _aKobayashi-Hitchin correspondence (Algebraic geometry). | |
650 | 0 | _aHermitian structures. | |
655 | 4 | _aElectronic books. | |
700 | 1 | _aTeleman, A. | |
776 | 0 | 8 |
_iPrint version: _aLübke, M. _tUniversal Kobayashi-Hitchin Correspondence on Hermitian Manifolds _dProvidence : American Mathematical Society,c2006 _z9780821839133 |
797 | 2 | _aProQuest (Firm) | |
830 | 0 | _aMemoirs of the American Mathematical Society | |
856 | 4 | 0 |
_uhttps://ebookcentral.proquest.com/lib/orpp/detail.action?docID=3114208 _zClick to View |
999 |
_c69739 _d69739 |