000 03276nam a22004693i 4500
001 EBC3114208
003 MiAaPQ
005 20240729124603.0
006 m o d |
007 cr cnu||||||||
008 240724s2006 xx o ||||0 eng d
020 _a9781470404673
_q(electronic bk.)
020 _z9780821839133
035 _a(MiAaPQ)EBC3114208
035 _a(Au-PeEL)EBL3114208
035 _a(CaPaEBR)ebr11039827
035 _a(OCoLC)922981564
040 _aMiAaPQ
_beng
_erda
_epn
_cMiAaPQ
_dMiAaPQ
050 4 _aQA601 -- .L83 2006eb
082 0 _a510 s;516.3/62
100 1 _aLübke, M.
245 1 0 _aUniversal Kobayashi-Hitchin Correspondence on Hermitian Manifolds.
250 _a1st ed.
264 1 _aProvidence :
_bAmerican Mathematical Society,
_c2006.
264 4 _c©2006.
300 _a1 online resource (112 pages)
336 _atext
_btxt
_2rdacontent
337 _acomputer
_bc
_2rdamedia
338 _aonline resource
_bcr
_2rdacarrier
490 1 _aMemoirs of the American Mathematical Society ;
_vv.183
505 0 _aIntro -- Contents -- Chapter 1. Introduction -- Chapter 2. The finite dimensional Kobayashi-Hitchin correspondence -- 2.1. Analytic Stability, Symplectic stability -- 2.2. The Continuity Method in the finite dimensional case -- 2.3. Maximal weight functions for linear and projective actions -- Chapter 3. A "universal" complex geometric classification problem -- 3.1. Oriented holomorphic pairs -- 3.2. The stability condition for universal oriented holomorphic pairs -- Chapter 4. Hermitian-Einstein pairs -- 4.1. The Hermitian-Einstein equation -- 4.2. Pairs which allow Hermitian-Einstein reductions are polystable -- Chapter 5. Polystable pairs allow Hermitian-Einstein reductions -- 5.1. The perturbed equation -- 5.2. A priori estimates for the solution s[sub(ε)] -- 5.3. Solving the equation (e[sub(ε)]) for ε ∈ ( 0,1] -- 5.4. Destabilizing the pair in the unbounded case -- Chapter 6. Examples and Applications -- 6.1. Oriented holomorphic principal bundles and oriented connections -- 6.2. Moduli spaces of oriented pairs -- 6.3. Non-abelian monopoles on Gauduchon surfaces -- Chapter 7. Appendix -- 7.1. Chern connections -- 7.2. Orbits of the adjoint action, sections in the adjoint bundle -- 7.3. Local maximal torus reductions of a K-bundle -- 7.4. Connection and maximal torus reductions -- 7.5. Analytic results -- 7.6. Weakly holomorphic parabolic reductions -- Bibliography.
588 _aDescription based on publisher supplied metadata and other sources.
590 _aElectronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2024. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
650 0 _aKobayashi-Hitchin correspondence (Algebraic geometry).
650 0 _aHermitian structures.
655 4 _aElectronic books.
700 1 _aTeleman, A.
776 0 8 _iPrint version:
_aLübke, M.
_tUniversal Kobayashi-Hitchin Correspondence on Hermitian Manifolds
_dProvidence : American Mathematical Society,c2006
_z9780821839133
797 2 _aProQuest (Firm)
830 0 _aMemoirs of the American Mathematical Society
856 4 0 _uhttps://ebookcentral.proquest.com/lib/orpp/detail.action?docID=3114208
_zClick to View
999 _c69739
_d69739