000 02125nam a22004693i 4500
001 EBC3114194
003 MiAaPQ
005 20240729124602.0
006 m o d |
007 cr cnu||||||||
008 240724s2009 xx o ||||0 eng d
020 _a9781470405571
_q(electronic bk.)
020 _z9780821843246
035 _a(MiAaPQ)EBC3114194
035 _a(Au-PeEL)EBL3114194
035 _a(CaPaEBR)ebr11039813
035 _a(OCoLC)922981779
040 _aMiAaPQ
_beng
_erda
_epn
_cMiAaPQ
_dMiAaPQ
050 4 _aQA295 -- .B475 2009eb
082 0 _a515/.24
100 1 _aBerkes, István.
245 1 0 _aOn the convergence of ∑c_{k}f(n_{k}x).
250 _a1st ed.
264 1 _aProvidence :
_bAmerican Mathematical Society,
_c2009.
264 4 _c©2009.
300 _a1 online resource (88 pages)
336 _atext
_btxt
_2rdacontent
337 _acomputer
_bc
_2rdamedia
338 _aonline resource
_bcr
_2rdacarrier
490 1 _aMemoirs of the American Mathematical Society ;
_vv.201
505 0 _aIntro -- Contents -- Introduction -- Chapter 1. Mean convergence -- Chapter 2. Almost everywhere convergence: sufficient conditions -- Chapter 3. Almost everywhere convergence: necessary conditions -- Chapter 4. Random sequences -- Chapter 5. Discrepancy of random sequences {S[sub(n)]x} -- Chapter 6. Some open problems -- Bibliography.
588 _aDescription based on publisher supplied metadata and other sources.
590 _aElectronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2024. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
650 0 _aConvergence.
650 0 _aFourier analysis.
655 4 _aElectronic books.
700 1 _aWeber, Michel.
776 0 8 _iPrint version:
_aBerkes, István
_tOn the convergence of ∑c_{k}f(n_{k}x)
_dProvidence : American Mathematical Society,c2009
_z9780821843246
797 2 _aProQuest (Firm)
830 0 _aMemoirs of the American Mathematical Society
856 4 0 _uhttps://ebookcentral.proquest.com/lib/orpp/detail.action?docID=3114194
_zClick to View
999 _c69725
_d69725