000 03315nam a22004573i 4500
001 EBC3114193
003 MiAaPQ
005 20240729124602.0
006 m o d |
007 cr cnu||||||||
008 240724s2008 xx o ||||0 eng d
020 _a9781470405175
_q(electronic bk.)
020 _z9780821841716
035 _a(MiAaPQ)EBC3114193
035 _a(Au-PeEL)EBL3114193
035 _a(CaPaEBR)ebr11039812
035 _a(OCoLC)922981874
040 _aMiAaPQ
_beng
_erda
_epn
_cMiAaPQ
_dMiAaPQ
050 4 _aQA193 -- .L63 2008eb
082 0 _a515/.7242
100 1 _aLocker, John.
245 1 0 _aEigenvalues and Completeness for Regular and Simply Irregular Two-Point Differential Operators.
250 _a1st ed.
264 1 _aProvidence :
_bAmerican Mathematical Society,
_c2008.
264 4 _c©2008.
300 _a1 online resource (194 pages)
336 _atext
_btxt
_2rdacontent
337 _acomputer
_bc
_2rdamedia
338 _aonline resource
_bcr
_2rdacarrier
490 1 _aMemoirs of the American Mathematical Society ;
_vv.195
505 0 _aIntro -- Contents -- Chapter 1. Introduction -- 1.1. Definitions and Notations -- 1.2. Summary of Results -- Chapter 2. Birkhoff Approximate Solutions -- 2.1. Birkhoff Approximate Solutions -- 2.2. Special Case: n = 2 -- Chapter 3. The Approximate Characteristic Determinant: Classification -- 3.1. The Approximate Characteristic Determinant -- 3.2. Classification for n Even -- 3.3. Classification for n Odd -- Chapter 4. Asymptotic Expansion of Solutions -- 4.1. Expansions for n Even -- 4.2. Expansions for n Odd -- Chapter 5. The Characteristic Determinant -- 5.1. The Characteristic Determinant for n Even -- 5.2. The Characteristic Determinant for n Odd -- 5.3. Special Case: n = 2 -- Chapter 6. The Green's Function -- 6.1. The Green's Function for n Even -- 6.2. The Green's Function for n Odd -- Chapter 7. The Eigenvalues for n Even -- 7.1. Case 1. p = q, ξ[sub(0)] ≠ η[sub(o)] -- 7.2. Case 2. p = q, ξ[sub(0) = η[sub(o)] -- 7.3. Case 3. p &lt -- q -- Chapter 8. The Eigenvalues for n Odd -- 8.1. Case 1. p = q -- 8.2. Case 2. p &lt -- q -- 8.3. Case 3. p &gt -- q -- Chapter 9. Completeness of the Generalized Eigenfunctions -- 9.1. Completeness for n Even -- 9.2. Completeness for n Odd -- Chapter 10. The Case L = T, Degenerate Irregular Examples -- 10.1. The Case L = T -- 10.2. Two Degenerate Irregular Examples -- 10.3. The Case n = 4, L = T -- Chapter 11. Unsolved Problems -- Chapter 12. Appendix -- Bibliography -- Index.
588 _aDescription based on publisher supplied metadata and other sources.
590 _aElectronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2024. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
650 0 _aEigenvalues.
650 0 _aDifferential operators.
655 4 _aElectronic books.
776 0 8 _iPrint version:
_aLocker, John
_tEigenvalues and Completeness for Regular and Simply Irregular Two-Point Differential Operators
_dProvidence : American Mathematical Society,c2008
_z9780821841716
797 2 _aProQuest (Firm)
830 0 _aMemoirs of the American Mathematical Society
856 4 0 _uhttps://ebookcentral.proquest.com/lib/orpp/detail.action?docID=3114193
_zClick to View
999 _c69724
_d69724