000 03761nam a22005293i 4500
001 EBC3114176
003 MiAaPQ
005 20240729124602.0
006 m o d |
007 cr cnu||||||||
008 240724s2011 xx o ||||0 eng d
020 _a9781470406240
_q(electronic bk.)
020 _z9780821852385
035 _a(MiAaPQ)EBC3114176
035 _a(Au-PeEL)EBL3114176
035 _a(CaPaEBR)ebr11039795
035 _a(OCoLC)922981766
040 _aMiAaPQ
_beng
_erda
_epn
_cMiAaPQ
_dMiAaPQ
050 4 _aQA320 -- .H373 2011eb
082 0 _a515.9
100 1 _aHofmann, Steve.
245 1 0 _aHardy Spaces Associated to Non-Negative Self-Adjoint Operators Satisfying Davies-Gaffney Estimates.
250 _a1st ed.
264 1 _aProvidence :
_bAmerican Mathematical Society,
_c2011.
264 4 _c©2011.
300 _a1 online resource (91 pages)
336 _atext
_btxt
_2rdacontent
337 _acomputer
_bc
_2rdamedia
338 _aonline resource
_bcr
_2rdacarrier
490 1 _aMemoirs of the American Mathematical Society ;
_vv.214
505 0 _aIntro -- Contents -- Chapter 1. Introduction -- Chapter 2. Notation and preliminaries -- 2.1. Spaces of homogeneous type -- 2.2. Assumptions -- 2.3. The classical Hardy space H1(Rn) -- 2.4. Hardy spaces via atoms -- 2.5. Hardy spaces via molecules -- 2.6. Hardy spaces via square and maximal functions -- 2.7. BMO spaces associated to operators -- 2.8. Historical notes -- Chapter 3. Davies-Gaffney estimates -- 3.1. Self-improving properties of Davies-Gaffney estimates -- 3.2. Finite speed propagation for the wave equation and Davies-Gaffney estimates -- Chapter 4. The decomposition into atoms -- 4.1. Strategy of the proof of Theorem 4.1 -- 4.2. H1L,at, M(X) H1L, Sh(X) H2(X) for all M&gt -- n0/4 -- 4.3. The inclusion ( H1L, Sh(X) H2(X))H1L,at, M(X) for all M1 -- 4.4. Equivalence of H1L, SP(X) and H1L,at, M(X) when M&gt -- n0/4 -- 4.5. Inclusion among the spaces H1L,at, M(X), H1L, Nh(X) and H1L, NP(X) -- Chapter 5. Relations between atoms and molecules -- Chapter 6. BMOL,M(X): Duality with Hardy spaces -- Chapter 7. Hardy spaces and Gaussian estimates -- 7.1. Hardy spaces H1L,at, M(X), H1L, Sh(X) and H1L, SP(X) and Gaussian estimates -- 7.2. Hardy spaces via maximal functions -- 7.3. The spaces BMOL(X) under Gaussian bounds -- Chapter 8. Hardy spaces associated to Schrödinger operators -- 8.1. Equivalences among H1L,at, M(Rn), H1L, Sh(Rn) and H1L, SP(Rn) -- 8.2. Maximal characterization of H1L,at, M(Rn) -- 8.3. H1L,at,MH1 bounds for Riesz transforms of Schrödinger operators -- Chapter 9. Further properties of Hardy spaces associated to operators -- 9.1. The semigroup with the conservation property -- 9.2. Hardy spaces HpL(X) for 1p&lt -- -- Bibliography.
588 _aDescription based on publisher supplied metadata and other sources.
590 _aElectronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2024. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
650 0 _aHardy spaces.
650 0 _aHarmonic analysis.
650 0 _aInterpolation spaces.
650 0 _aPseudodifferential operators.
655 4 _aElectronic books.
700 1 _aLu, Guozhen.
700 1 _aMitrea, Dorina.
700 1 _aMitrea, Marius.
700 1 _aYan, Lixin.
776 0 8 _iPrint version:
_aHofmann, Steve
_tHardy Spaces Associated to Non-Negative Self-Adjoint Operators Satisfying Davies-Gaffney Estimates
_dProvidence : American Mathematical Society,c2011
_z9780821852385
797 2 _aProQuest (Firm)
830 0 _aMemoirs of the American Mathematical Society
856 4 0 _uhttps://ebookcentral.proquest.com/lib/orpp/detail.action?docID=3114176
_zClick to View
999 _c69707
_d69707