000 03032nam a22004573i 4500
001 EBC3114145
003 MiAaPQ
005 20240729124601.0
006 m o d |
007 cr cnu||||||||
008 240724s2013 xx o ||||0 eng d
020 _a9781470405410
_q(electronic bk.)
020 _z9780821843260
035 _a(MiAaPQ)EBC3114145
035 _a(Au-PeEL)EBL3114145
035 _a(CaPaEBR)ebr11039764
035 _a(OCoLC)922981729
040 _aMiAaPQ
_beng
_erda
_epn
_cMiAaPQ
_dMiAaPQ
050 4 _aQC174.85.S34 -- .C58 2009eb
082 0 _a530.13
100 1 _aCiucu, Mihai.
245 1 4 _aThe Scaling Limit of the Correlation of Holes on the Triangular Lattice with Periodic Boundary Conditions.
250 _a1st ed.
264 1 _aProvidence :
_bAmerican Mathematical Society,
_c2013.
264 4 _c©2009.
300 _a1 online resource (118 pages)
336 _atext
_btxt
_2rdacontent
337 _acomputer
_bc
_2rdamedia
338 _aonline resource
_bcr
_2rdacarrier
505 0 _aIntro -- Contents -- Abstract -- Introduction -- Chapter 1. Definition of ω and statement of main result -- Chapter 2. Deducing Theorem 1.2 from Theorem 2.1 and Proposition 2.2 -- Chapter 3. A determinant formula for ω -- Chapter 4. An exact formula for U[sub(s)](a, b) -- Chapter 5. Asymptotic singularity and Newton's divided difference operator -- Chapter 6. The asymptotics of the entries in the U-part of M' -- Chapter 7. The asymptotics of the entries in the P-part of M' -- Chapter 8. The evaluation of det(M") -- Chapter 9. Divisibility of det(M") by the powers of q … ς and q … ς[sup(-1)] -- Chapter 10. The case q = 0 of Theorem 8.1, up to a constant multiple -- Chapter 11. Divisibility of det(dM[sub(0)]) by the powers of (x[sub(i)] … x[sub(j)]) … ς[sup(±1)](y[sub(i)] … y[sub(j)]) … ah -- Chapter 12. Divisibility of det(dM[sub(0)]) by the powers of (x[sub(i)] … z[sub(j)]) … ς[sup(±1)](y[sub(i)] … ω[sub(j)]) -- Chapter 13. The proofs of Theorem 2.1 and Proposition 2.2 -- Chapter 14. The case of arbitrary slopes -- Chapter 15. Random covering surfaces and physical interpretation -- Appendix. A determinant evaluation -- Bibliography.
588 _aDescription based on publisher supplied metadata and other sources.
590 _aElectronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2024. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
650 0 _aScaling laws (Statistical physics).
650 0 _aBethe-ansatz technique.
650 0 _aTiling (Mathematics).
650 0 _aStatistical mechanics.
655 4 _aElectronic books.
776 0 8 _iPrint version:
_aCiucu, Mihai
_tThe Scaling Limit of the Correlation of Holes on the Triangular Lattice with Periodic Boundary Conditions
_dProvidence : American Mathematical Society,c2013
_z9780821843260
797 2 _aProQuest (Firm)
856 4 0 _uhttps://ebookcentral.proquest.com/lib/orpp/detail.action?docID=3114145
_zClick to View
999 _c69676
_d69676