000 03752nam a22004813i 4500
001 EBC3114136
003 MiAaPQ
005 20240729124601.0
006 m o d |
007 cr cnu||||||||
008 240724s2005 xx o ||||0 eng d
020 _a9781470404260
_q(electronic bk.)
020 _z9780821837047
035 _a(MiAaPQ)EBC3114136
035 _a(Au-PeEL)EBL3114136
035 _a(CaPaEBR)ebr11039755
035 _a(OCoLC)922981715
040 _aMiAaPQ
_beng
_erda
_epn
_cMiAaPQ
_dMiAaPQ
050 4 _aQA274.22 -- .H8 2005eb
082 0 _a510 s;519.2/2
100 1 _aHu, Yaozhong.
245 1 0 _aIntegral Transformations and Anticipative Calculus for Fractional Brownian Motions.
250 _a1st ed.
264 1 _aProvidence :
_bAmerican Mathematical Society,
_c2005.
264 4 _c©2005.
300 _a1 online resource (144 pages)
336 _atext
_btxt
_2rdacontent
337 _acomputer
_bc
_2rdamedia
338 _aonline resource
_bcr
_2rdacarrier
490 1 _aMemoirs of the American Mathematical Society ;
_vv.175
505 0 _aIntro -- Contents -- Abstract -- Chapter 1. Introduction -- Chapter 2. Representations -- Chapter 3. Induced Transformation I -- Chapter 4. Approximation -- 4.1. Rate of Convergence When 0 &lt -- H &lt -- 1/2 -- 4.2. Rate of Convergence When 1/2 &lt -- H &lt -- 1 -- 4.3. Higher Order of Convergence When 3/4 &lt -- H &lt -- 1 -- 4.4. Best Approximation -- Chapter 5. Induced Transformation II -- 5.1. Operators Associated With Z[sub(H)](t,s) -- 5.2. Inverse Operator of T[sub(H,T)] -- 5.3. B[sub(H,T)]T[sub(H,T)] when 1/2 &lt -- H &lt -- 1 -- 5.4. T[sub(H,T)]B[sub(H,T)] for 1/2 &lt -- H &lt -- 1 -- 5.5. B[sub(H,T)]T[sub(H,T)] for 0 &lt -- H &lt -- 1/2 -- 5.6. T[sub(H,T)]B[sub(H,T)] for 0 &lt -- H &lt -- 1/2 -- 5.7. Transpose of T[sub(H,T)] -- 5.8. The Expression for T[sub(H,T)]T*[sub(H,T)] -- 5.9. The transpose of B[sub(H,T)] -- 5.10. The Expression of B*[sub(H,T)]B[sub(H,T)] -- 5.11. Extension of T*[sub(H,T)] and B*[sub(H,T)] -- 5.12. Representation of Brownian motion by fractional Brownian motion -- Chapter 6. Stochastic Calculus of Variation -- 6.1. Stochastic Integral for Deterministic Integrands -- 6.2. A Probability Structure Preserving Mapping -- 6.3. Stochastic Integral for General Integrands -- 6.4. Malliavin Derivatives -- 6.5. Note on Stochastic Integral for ffim -- Chapter 7. Stochastic Integration -- 7.1. Existence and Examples -- 7.2. Stochastic Integral ∫[sup(a)][sub(0)] f(t)dB[sup(H)][sub(t)] of different upper limits -- 7.3. An L[sub(p)]estimate -- 7.4. An Example -- Chapter 8. Nonlinear Translation (Absolute Continuity) -- Chapter 9. Conditional Expectation -- Chapter 10. Integration By Parts -- Chapter 11. Composition (ltô Formula) -- Chapter 12. Clark Type Representation -- Chapter 13. Continuation -- Chapter 14. Stochastic Control -- Chapter 15. Appendix -- Bibliography.
588 _aDescription based on publisher supplied metadata and other sources.
590 _aElectronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2024. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
650 0 _aStochastic integrals.
650 0 _aGaussian processes.
650 0 _aFractional calculus.
650 0 _aIntegral transforms.
655 4 _aElectronic books.
776 0 8 _iPrint version:
_aHu, Yaozhong
_tIntegral Transformations and Anticipative Calculus for Fractional Brownian Motions
_dProvidence : American Mathematical Society,c2005
_z9780821837047
797 2 _aProQuest (Firm)
830 0 _aMemoirs of the American Mathematical Society
856 4 0 _uhttps://ebookcentral.proquest.com/lib/orpp/detail.action?docID=3114136
_zClick to View
999 _c69667
_d69667