000 | 04823nam a22005173i 4500 | ||
---|---|---|---|
001 | EBC3114130 | ||
003 | MiAaPQ | ||
005 | 20240729124601.0 | ||
006 | m o d | | ||
007 | cr cnu|||||||| | ||
008 | 240724s2006 xx o ||||0 eng d | ||
020 |
_a9781470404567 _q(electronic bk.) |
||
020 | _z9780821838747 | ||
035 | _a(MiAaPQ)EBC3114130 | ||
035 | _a(Au-PeEL)EBL3114130 | ||
035 | _a(CaPaEBR)ebr11039749 | ||
035 | _a(OCoLC)922981700 | ||
040 |
_aMiAaPQ _beng _erda _epn _cMiAaPQ _dMiAaPQ |
||
050 | 4 | _aQA374 -- .B37 2006eb | |
082 | 0 | _a510 s;515/.353 | |
100 | 1 | _aBarbu, Viorel. | |
245 | 1 | 0 | _aTangential Boundary Stabilization of Navier-Stokes Equations. |
250 | _a1st ed. | ||
264 | 1 |
_aProvidence : _bAmerican Mathematical Society, _c2006. |
|
264 | 4 | _c©2006. | |
300 | _a1 online resource (146 pages) | ||
336 |
_atext _btxt _2rdacontent |
||
337 |
_acomputer _bc _2rdamedia |
||
338 |
_aonline resource _bcr _2rdacarrier |
||
490 | 1 |
_aMemoirs of the American Mathematical Society ; _vv.181 |
|
505 | 0 | _aIntro -- Contents -- Acknowledgements -- Chapter 1. Introduction -- Chapter 2. Main results -- Chapter 3. Proof of Theorems 2.1 and 2.2 on the linearized system ( 2.4): d = 3 -- 3.1. Abstract models of the linearized problem ( 2.3). Regularity -- 3.2. The operator D*A, D*:H→(L[sup(2)](T))[sub(D)] -- 3.3. A critical boundary property related to the boundary c.c. in ( 3.1.2e) -- 3.4. Some technical preliminaries -- space and system decomposition -- 3.5. Theorem 2.1, general case d = 3: An infinite-dimensional open-loop boundary controller g satisfying the FCC (3.1.22)-(3.1.24) for the linearized system… -- 3.6. Feedback stabilization of the unstable [sub(Z)]N-system ( 3.4.9) on Z[sup(u)][sub(N)] under the FDSA -- 3.7. Theorem 2.2, case d = 3 under the FDSA: An open-loop boundary controller g satisfying the FCC ( 3.1.22)-( 3.1.24) for the linearized system… -- Chapter 4. Boundary feedback uniform stabilization of the linearized system( 3.1.4) via an optimal control problem and corresponding Riccati theory. Case d = 3 -- 4.0. Orientation -- 4.1. The optimal control problem ( Case d = 3) -- 4.2. Optimal feedback dynamics: the feedback semigroup and its generator on W -- 4.3. Feedback synthesis via the Riccati operator -- 4.4. Identification of the Riccati operator R in ( 4.1.8) with the operator R[sub(1)] in ( 4.3.1) -- 4.5. A Riccati-type algebraic equation satisfied by the operator R on the domain D(A[sup2)][Sub(R)], Where A[sub(R)] is the feedback generator -- Chapter 5. Theorem 2.3(i): Well-posedness of the Navier-Stokes equations with Riccati-based boundary feedback control. Case d = 3 -- Chapter 6. Theorem 2.3(ii): Local uniform stability of the Navier-Stokes equations with Riccati-based boundary feedback control -- Chapter 7. A PDE-interpretation of the abstract results in Sections 5 and 6. | |
505 | 8 | _aAppendix A. Technical Material Complementing Section 3.1 -- A. l. Extension of the Leray Projector P Outside the Space (L[sup(2)](Ω))[sup(d)] -- A. 2. Definition and Regularity of the Dirichlet Map in the General Case. Abstract Model -- Appendix B. Boundary feedback stabilization with arbitrarily small supportof the linearized system -- B.1. An open loop infinite dimensional boundary controller g ε L[sup(2)](0,∞) -- (L[sup(2)](T[sub(1)])[sup[sup(d)]), T[sub(1)] arbitrary, for the linearized system -- B.2. Feedback stabilization in (H[sup3/2 ε)(Ω))[sup(d)], d = 2,3, of the N S linearized system -- B.3. Completion of the proof of Theorem 2.5 and Theorem 2.6 for the N-S model (1.1), d = 2 -- B.4. A regularity property of the Riccati operator corresponding to the linearized operator A in (1.11) -- Appendix C. Equivalence between unstable and stable versions of the Optimal Control Problem of Section 4 -- Appendix D. Proof that FS(.) εL(W -- L[sup(2)](0,∞) -- (L[sup(2)](T))[sup(d)] -- Bibliography. | |
588 | _aDescription based on publisher supplied metadata and other sources. | ||
590 | _aElectronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2024. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries. | ||
650 | 0 | _aNavier-Stokes equations. | |
650 | 0 | _aBoundary layer. | |
650 | 0 | _aMathematical optimization. | |
650 | 0 | _aRiccati equation. | |
655 | 4 | _aElectronic books. | |
700 | 1 | _aLasiecka, Irena. | |
700 | 1 | _aTriggiani, Roberto. | |
776 | 0 | 8 |
_iPrint version: _aBarbu, Viorel _tTangential Boundary Stabilization of Navier-Stokes Equations _dProvidence : American Mathematical Society,c2006 _z9780821838747 |
797 | 2 | _aProQuest (Firm) | |
830 | 0 | _aMemoirs of the American Mathematical Society | |
856 | 4 | 0 |
_uhttps://ebookcentral.proquest.com/lib/orpp/detail.action?docID=3114130 _zClick to View |
999 |
_c69661 _d69661 |