000 04823nam a22005173i 4500
001 EBC3114130
003 MiAaPQ
005 20240729124601.0
006 m o d |
007 cr cnu||||||||
008 240724s2006 xx o ||||0 eng d
020 _a9781470404567
_q(electronic bk.)
020 _z9780821838747
035 _a(MiAaPQ)EBC3114130
035 _a(Au-PeEL)EBL3114130
035 _a(CaPaEBR)ebr11039749
035 _a(OCoLC)922981700
040 _aMiAaPQ
_beng
_erda
_epn
_cMiAaPQ
_dMiAaPQ
050 4 _aQA374 -- .B37 2006eb
082 0 _a510 s;515/.353
100 1 _aBarbu, Viorel.
245 1 0 _aTangential Boundary Stabilization of Navier-Stokes Equations.
250 _a1st ed.
264 1 _aProvidence :
_bAmerican Mathematical Society,
_c2006.
264 4 _c©2006.
300 _a1 online resource (146 pages)
336 _atext
_btxt
_2rdacontent
337 _acomputer
_bc
_2rdamedia
338 _aonline resource
_bcr
_2rdacarrier
490 1 _aMemoirs of the American Mathematical Society ;
_vv.181
505 0 _aIntro -- Contents -- Acknowledgements -- Chapter 1. Introduction -- Chapter 2. Main results -- Chapter 3. Proof of Theorems 2.1 and 2.2 on the linearized system ( 2.4): d = 3 -- 3.1. Abstract models of the linearized problem ( 2.3). Regularity -- 3.2. The operator D*A, D*:H→(L[sup(2)](T))[sub(D)] -- 3.3. A critical boundary property related to the boundary c.c. in ( 3.1.2e) -- 3.4. Some technical preliminaries -- space and system decomposition -- 3.5. Theorem 2.1, general case d = 3: An infinite-dimensional open-loop boundary controller g satisfying the FCC (3.1.22)-(3.1.24) for the linearized system… -- 3.6. Feedback stabilization of the unstable [sub(Z)]N-system ( 3.4.9) on Z[sup(u)][sub(N)] under the FDSA -- 3.7. Theorem 2.2, case d = 3 under the FDSA: An open-loop boundary controller g satisfying the FCC ( 3.1.22)-( 3.1.24) for the linearized system… -- Chapter 4. Boundary feedback uniform stabilization of the linearized system( 3.1.4) via an optimal control problem and corresponding Riccati theory. Case d = 3 -- 4.0. Orientation -- 4.1. The optimal control problem ( Case d = 3) -- 4.2. Optimal feedback dynamics: the feedback semigroup and its generator on W -- 4.3. Feedback synthesis via the Riccati operator -- 4.4. Identification of the Riccati operator R in ( 4.1.8) with the operator R[sub(1)] in ( 4.3.1) -- 4.5. A Riccati-type algebraic equation satisfied by the operator R on the domain D(A[sup2)][Sub(R)], Where A[sub(R)] is the feedback generator -- Chapter 5. Theorem 2.3(i): Well-posedness of the Navier-Stokes equations with Riccati-based boundary feedback control. Case d = 3 -- Chapter 6. Theorem 2.3(ii): Local uniform stability of the Navier-Stokes equations with Riccati-based boundary feedback control -- Chapter 7. A PDE-interpretation of the abstract results in Sections 5 and 6.
505 8 _aAppendix A. Technical Material Complementing Section 3.1 -- A. l. Extension of the Leray Projector P Outside the Space (L[sup(2)](Ω))[sup(d)] -- A. 2. Definition and Regularity of the Dirichlet Map in the General Case. Abstract Model -- Appendix B. Boundary feedback stabilization with arbitrarily small supportof the linearized system -- B.1. An open…loop infinite dimensional boundary controller g ε L[sup(2)](0,∞) -- (L[sup(2)](T[sub(1)])[sup[sup(d)]), T[sub(1)] arbitrary, for the linearized system -- B.2. Feedback stabilization in (H[sup3/2…ε)(Ω))[sup(d)], d = 2,3, of the N…S linearized system -- B.3. Completion of the proof of Theorem 2.5 and Theorem 2.6 for the N-S model (1.1), d = 2 -- B.4. A regularity property of the Riccati operator corresponding to the linearized operator A in (1.11) -- Appendix C. Equivalence between unstable and stable versions of the Optimal Control Problem of Section 4 -- Appendix D. Proof that FS(.) εL(W -- L[sup(2)](0,∞) -- (L[sup(2)](T))[sup(d)] -- Bibliography.
588 _aDescription based on publisher supplied metadata and other sources.
590 _aElectronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2024. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
650 0 _aNavier-Stokes equations.
650 0 _aBoundary layer.
650 0 _aMathematical optimization.
650 0 _aRiccati equation.
655 4 _aElectronic books.
700 1 _aLasiecka, Irena.
700 1 _aTriggiani, Roberto.
776 0 8 _iPrint version:
_aBarbu, Viorel
_tTangential Boundary Stabilization of Navier-Stokes Equations
_dProvidence : American Mathematical Society,c2006
_z9780821838747
797 2 _aProQuest (Firm)
830 0 _aMemoirs of the American Mathematical Society
856 4 0 _uhttps://ebookcentral.proquest.com/lib/orpp/detail.action?docID=3114130
_zClick to View
999 _c69661
_d69661