000 03252nam a22004693i 4500
001 EBC3114100
003 MiAaPQ
005 20240729124600.0
006 m o d |
007 cr cnu||||||||
008 240724s2008 xx o ||||0 eng d
020 _a9781470405007
_q(electronic bk.)
020 _z9780821840436
035 _a(MiAaPQ)EBC3114100
035 _a(Au-PeEL)EBL3114100
035 _a(CaPaEBR)ebr11039719
035 _a(OCoLC)922981520
040 _aMiAaPQ
_beng
_erda
_epn
_cMiAaPQ
_dMiAaPQ
050 4 _aQA331 -- .D56 2008eb
082 0 _a515/.2433
100 1 _aDindoš, Martin.
245 1 0 _aHardy Spaces and Potential Theory on C^{1} Domains in Riemannian Manifolds.
250 _a1st ed.
264 1 _aProvidence :
_bAmerican Mathematical Society,
_c2008.
264 4 _c©2008.
300 _a1 online resource (92 pages)
336 _atext
_btxt
_2rdacontent
337 _acomputer
_bc
_2rdamedia
338 _aonline resource
_bcr
_2rdacarrier
490 1 _aMemoirs of the American Mathematical Society ;
_vv.191
505 0 _aIntro -- Contents -- Abstract -- Chapter 0. Introduction -- Chapter 1. Background and Definitions -- 1.1. Notation, terminology and known results -- 1.2. Hardy spaces and layer potentials -- Chapter 2. The Boundary Layer Potentials -- 2.1. Compactness of operators K, K* -- 2.2. Invertibility of ±1/2+ K, ±1/2 + K* -- Chapter 3. The Dirichlet problem -- 3.1. L[sup(p)] boundary data -- 3.2. Hardy space boundary data -- 3.3. Holder space boundary data -- Chapter 4. The Neumann problem -- 4.1. L[sup(p)] boundary data -- 4.2. Hardy space boundary data -- 4.3. Holder space boundary data -- Chapter 5. Compactness of Layer Potentials, Part II -- The Dirichlet regularity problem -- 5.1. Preliminaries -- 5.2. Compactness and invertibihty of K on Sobolev space H[sup(1,p)] -- 5.3. Compactness and invertibihty of K on Hardy-Sobolev space H[sup(1,p)] -- 5.4. Dirichlet regularity problem, Sobolev H[sup(1,p)] (1 &lt -- p &lt -- ∞) data -- 5.5. Dirichlet regularity problem, H[sup(1,p)] (( n…1) / n &lt -- p ≤ 1) data -- Chapter 6. The equivalence of Hardy space definitions -- 6.1. Preliminaries -- 6.2. C-suharmonicity -- 6.3. The main step -- 6.4. The equivalence theorem on C[sup(1)] domains -- 6.5. The equivalence theorem on Lipschitz domains -- Appendix A. Variable Coefficient Cauchy Integrals -- Appendix B. One Result on the Maximal Operator -- Bibliography.
588 _aDescription based on publisher supplied metadata and other sources.
590 _aElectronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2024. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
650 0 _aHardy spaces.
650 0 _aRiemannian manifolds.
650 0 _aPotential theory (Mathematics).
655 4 _aElectronic books.
776 0 8 _iPrint version:
_aDindoš, Martin
_tHardy Spaces and Potential Theory on C^{1} Domains in Riemannian Manifolds
_dProvidence : American Mathematical Society,c2008
_z9780821840436
797 2 _aProQuest (Firm)
830 0 _aMemoirs of the American Mathematical Society
856 4 0 _uhttps://ebookcentral.proquest.com/lib/orpp/detail.action?docID=3114100
_zClick to View
999 _c69631
_d69631