000 03847nam a22004933i 4500
001 EBC3114086
003 MiAaPQ
005 20240729124559.0
006 m o d |
007 cr cnu||||||||
008 240724s2010 xx o ||||0 eng d
020 _a9781470405687
_q(electronic bk.)
020 _z9780821846599
035 _a(MiAaPQ)EBC3114086
035 _a(Au-PeEL)EBL3114086
035 _a(CaPaEBR)ebr11039705
035 _a(OCoLC)922981615
040 _aMiAaPQ
_beng
_erda
_epn
_cMiAaPQ
_dMiAaPQ
050 4 _aQA331 -- .M39 2009eb
082 0 _a515.982
100 1 _aMayer, Volker.
245 1 0 _aThermodynamical Formalism and Multifractal Analysis for Meromorphic Functions of Finite Order.
250 _a1st ed.
264 1 _aProvidence :
_bAmerican Mathematical Society,
_c2010.
264 4 _c©2009.
300 _a1 online resource (120 pages)
336 _atext
_btxt
_2rdacontent
337 _acomputer
_bc
_2rdamedia
338 _aonline resource
_bcr
_2rdacarrier
490 1 _aMemoirs of the American Mathematical Society ;
_vv.203
505 0 _aIntro -- Contents -- Abstract -- Chapter 1. Introduction -- Chapter 2. Balanced functions -- 2.1. Growth conditions -- 2.2. The precise form of 2 -- 2.3. Classical families -- 2.4. Functions with polynomial Schwarzian derivative -- 2.5. Functions with rational Schwarzian derivative -- 2.6. Uniform balanced growth -- Chapter 3. Transfer operator and Nevanlinna Theory -- 3.1. Choice of a Riemannian metric and transfer operator -- 3.2. Nevanlinna Theory and Borel Sums -- Chapter 4. Preliminaries, Hyperbolicity and Distortion Properties -- 4.1. Dynamical preliminaries and hyperbolicity -- 4.2. Distortion properties -- 4.3. Hölder functions and dynamical Hölder property -- Chapter 5. Perron--Frobenius Operators and Generalized Conformal Measures -- 5.1. Tame potentials -- 5.2. Growth condition and cohomological Perron--Frobenius operator -- 5.3. Topological pressure and existence of conformal measures -- 5.4. Thermodynamical formalism -- 5.5. The support and uniqueness of the conformal measure -- Chapter 6. Finer properties of Gibbs States -- 6.1. The two norm inequality and the spectral gap -- 6.2. Ergodic properties of Gibbs states -- 6.3. Decay of correlations and Central Limit Theorem -- 6.4. Cohomologies and 2=0 -- 6.5. Variational principle -- Chapter 7. Regularity of Perron-Frobenius Operators and Topological Pressure -- 7.1. Analyticity of Perron-Frobenius operators -- 7.2. Analyticity of pressure -- 7.3. Derivatives of the pressure function -- Chapter 8. Multifractal analysis -- 8.1. Hausdorff dimension of Gibbs states -- 8.2. The temperature function -- 8.3. Multifractal analysis -- Chapter 9. Multifractal Analysis of Analytic Families of Dynamically Regular Functions -- 9.1. Extensions of harmonic functions -- 9.2. Holomorphic families and quasi-conformal conjugacies -- 9.3. Real analyticity of the multifractal function -- Bibliography.
505 8 _aIndex.
588 _aDescription based on publisher supplied metadata and other sources.
590 _aElectronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2024. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
650 0 _aFunctions, Meromorphic.
650 0 _aFunctions of complex variables.
650 0 _aFractals.
655 4 _aElectronic books.
700 1 _aUrbański, Mariusz.
776 0 8 _iPrint version:
_aMayer, Volker
_tThermodynamical Formalism and Multifractal Analysis for Meromorphic Functions of Finite Order
_dProvidence : American Mathematical Society,c2010
_z9780821846599
797 2 _aProQuest (Firm)
830 0 _aMemoirs of the American Mathematical Society
856 4 0 _uhttps://ebookcentral.proquest.com/lib/orpp/detail.action?docID=3114086
_zClick to View
999 _c69617
_d69617