000 03662nam a22004813i 4500
001 EBC3114053
003 MiAaPQ
005 20240729124558.0
006 m o d |
007 cr cnu||||||||
008 240724s2014 xx o ||||0 eng d
020 _a9781470416690
_q(electronic bk.)
020 _z9780821892121
035 _a(MiAaPQ)EBC3114053
035 _a(Au-PeEL)EBL3114053
035 _a(CaPaEBR)ebr11039672
035 _a(OCoLC)922981578
040 _aMiAaPQ
_beng
_erda
_epn
_cMiAaPQ
_dMiAaPQ
050 4 _aQA612.7 -- .L36 2013eb
082 0 _a514/.24
100 1 _aLambrechts, Pascal.
245 1 0 _aFormality of the Little N-disks Operad.
250 _a1st ed.
264 1 _aProvidence :
_bAmerican Mathematical Society,
_c2014.
264 4 _c©2014.
300 _a1 online resource (130 pages)
336 _atext
_btxt
_2rdacontent
337 _acomputer
_bc
_2rdamedia
338 _aonline resource
_bcr
_2rdacarrier
490 1 _aMemoirs of the American Mathematical Society ;
_vv.230
505 0 _aIntro -- Contents -- Acknowledgments -- Chapter 1. Introduction -- 1. Plan of the paper -- Chapter 2. Notation, linear orders, weak partitions, and operads -- 2.1. Notation -- 2.2. Linear orders -- 2.3. Weak ordered partitions -- 2.4. Operads and cooperads -- Chapter 3. CDGA models for operads -- Chapter 4. Real homotopy theory of semi-algebraic sets -- Chapter 5. The Fulton-MacPherson operad -- 5.1. Compactification of configuration spaces in ℝ^{ℕ} -- 5.2. The operad structure -- 5.3. The canonical projections -- 5.4. Decomposition of the boundary of [ ] into codimension 0 faces -- 5.5. Spaces of singular configurations -- 5.6. Pullback of a canonical projection along an operad structure map -- 5.7. Decomposition of the fiberwise boundary along a canonical projection -- 5.8. Orientation of [ ] -- 5.9. Proof of the local triviality of the canonical projections -- Chapter 6. The CDGAs of admissible diagrams -- 6.1. Diagrams -- 6.2. The module ( ) of diagrams -- 6.3. Product of diagrams -- 6.4. A differential on the space of diagrams -- 6.5. The CDGA ( ) of admissible diagrams -- Chapter 7. Cooperad structure on the spaces of (admissible) diagrams -- 7.1. Construction of the cooperad structure maps Ψ_{ } and Ψ_{ } -- 7.2. Ψ_{ } and Ψ_{ } are morphisms of algebras -- 7.3. Ψ_{ } is a chain map -- 7.4. Proof that the cooperad structure is well-defined -- Chapter 8. Equivalence of the cooperads and ℋ*( [∙]) -- Chapter 9. The Kontsevich configuration space integrals -- 9.1. Construction of the Kontsevich configuration space integral -- 9.2. is a morphism of algebras -- 9.3. Vanishing of on non-admissible diagrams -- 9.4. and are chain maps -- 9.5. and are almost morphisms of cooperads -- Chapter 10. Proofs of the formality theorems -- Index of notation -- Bibliography.
588 _aDescription based on publisher supplied metadata and other sources.
590 _aElectronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2024. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
650 0 _aHomotopy theory.
650 0 _aOperads.
650 0 _aLoop spaces.
655 4 _aElectronic books.
700 1 _aVolić, Ismar.
776 0 8 _iPrint version:
_aLambrechts, Pascal
_tFormality of the Little N-disks Operad
_dProvidence : American Mathematical Society,c2014
_z9780821892121
797 2 _aProQuest (Firm)
830 0 _aMemoirs of the American Mathematical Society
856 4 0 _uhttps://ebookcentral.proquest.com/lib/orpp/detail.action?docID=3114053
_zClick to View
999 _c69584
_d69584