000 04020nam a22004813i 4500
001 EBC3114048
003 MiAaPQ
005 20240729124558.0
006 m o d |
007 cr cnu||||||||
008 240724s2009 xx o ||||0 eng d
020 _a9781470405304
_q(electronic bk.)
020 _z9780821842584
035 _a(MiAaPQ)EBC3114048
035 _a(Au-PeEL)EBL3114048
035 _a(CaPaEBR)ebr11039667
035 _a(OCoLC)922981573
040 _aMiAaPQ
_beng
_erda
_epn
_cMiAaPQ
_dMiAaPQ
050 4 _aQA174.2 -- .C37 2009eb
082 0 _a511.3/26
100 1 _aCaprace, Pierre-Emmanuel.
245 1 0 _aAbstract' Homomorphisms of Split Kac-Moody Groups.
250 _a1st ed.
264 1 _aProvidence :
_bAmerican Mathematical Society,
_c2009.
264 4 _c©2009.
300 _a1 online resource (108 pages)
336 _atext
_btxt
_2rdacontent
337 _acomputer
_bc
_2rdamedia
338 _aonline resource
_bcr
_2rdacarrier
490 1 _aMemoirs of the American Mathematical Society ;
_vv.198
505 0 _aIntro -- Contents -- Introduction -- Acknowledgements -- Chapter 1. The objects: Kac-Moody groups, root data and Tits buildings -- 1.1. Kac-Moody groups and Tits functors -- 1.2. Root data -- 1.3. Tits buildings -- 1.4. Twin root data and twin buildings: a short dictionary -- Chapter 2. Basic tools from geometric group theory -- 2.1. CAT(0) geometry -- 2.2. Rigidity of algebraic-group-actions on trees -- Chapter 3. Kac-Moody groups and algebraic groups -- 3.1. Bounded subgroups -- 3.2. Adjoint representation of Tits functors -- 3.3. A few facts from the theory of algebraic groups -- Chapter 4. Isomorphisms of Kac-Moody groups: an overview -- 4.1. The isomorphism theorem -- 4.2. Diagonalizable subgroups and their centralizers -- 4.3. Completely reducible subgroups and their centralizers -- 4.4. Basic recognition of the ground field -- 4.5. Detecting rank one subgroups of Kac-Moody groups -- 4.6. Images of diagonalizable subgroups under Kac-Moody group isomorphisms -- 4.7. A technical auxiliary to the isomorphism theorem -- Chapter 5. Isomorphisms of Kac-Moody groups in characteristic zero -- 5.1. Rigidity of SL[sub(2)](Q)-actions on CAT(0) polyhedral complexes -- 5.2. Homomorphisms of Chevalley groups over Q to Kac-Moody groups -- 5.3. Regularity of diagonalizable subgroups -- 5.4. Proof of the isomorphism theorem -- Chapter 6. Isomorphisms of Kac-Moody groups in positive characteristic -- 6.1. On bounded subgroups of Kac-Moody groups -- 6.2. Homomorphisms of certain algebraic groups to Kac-Moody groups -- 6.3. Images of certain small subgroups under Kac-Moody group isomorphisms -- 6.4. Proof of the isomorphism theorem -- Chapter 7. Homomorphisms of Kac-Moody groups to algebraic groups -- 7.1. The non-linearity theorem -- 7.2. A combinatorial characterization of affine Coxeter groups -- 7.3. On infinite root systems.
505 8 _a7.4. Proof of the non-linearity theorem -- Chapter 8. Unitary forms of Kac-Moody groups -- 8.1. Introduction -- 8.2. Definitions -- 8.3. Isomorphisms of unitary forms -- 8.4. Non-linearity -- Bibliography -- Index -- A -- B -- C -- D -- G -- H -- I -- K -- L -- M -- N -- O -- P -- R -- S -- T -- U -- V -- W.
588 _aDescription based on publisher supplied metadata and other sources.
590 _aElectronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2024. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
650 0 _aIsomorphisms (Mathematics).
650 0 _aAutomorphisms.
650 0 _aKac-Moody algebras.
655 4 _aElectronic books.
776 0 8 _iPrint version:
_aCaprace, Pierre-Emmanuel
_tAbstract' Homomorphisms of Split Kac-Moody Groups
_dProvidence : American Mathematical Society,c2009
_z9780821842584
797 2 _aProQuest (Firm)
830 0 _aMemoirs of the American Mathematical Society
856 4 0 _uhttps://ebookcentral.proquest.com/lib/orpp/detail.action?docID=3114048
_zClick to View
999 _c69579
_d69579