000 03733nam a22005053i 4500
001 EBC3114010
003 MiAaPQ
005 20240729124557.0
006 m o d |
007 cr cnu||||||||
008 240724s1992 xx o ||||0 eng d
020 _a9781470400583
_q(electronic bk.)
020 _z9780821825426
035 _a(MiAaPQ)EBC3114010
035 _a(Au-PeEL)EBL3114010
035 _a(CaPaEBR)ebr10918963
035 _a(OCoLC)922981474
040 _aMiAaPQ
_beng
_erda
_epn
_cMiAaPQ
_dMiAaPQ
050 4 _aQA3 -- .I94 1992eb
082 0 _a514/.2
100 1 _aIze, Jorge.
245 1 0 _aDegree Theory for Equivariant Maps, the General S1-Action.
250 _a1st ed.
264 1 _aProvidence :
_bAmerican Mathematical Society,
_c1992.
264 4 _c©1992.
300 _a1 online resource (194 pages)
336 _atext
_btxt
_2rdacontent
337 _acomputer
_bc
_2rdamedia
338 _aonline resource
_bcr
_2rdacarrier
490 1 _aMemoirs of the American Mathematical Society ;
_vv.100
505 0 _aIntro -- TABLE OF CONTENTS -- INTRODUCTION -- CHAPTER ONE: PRELIMINARIES -- 1.1. S[sup(1)]-actions -- 1.2. Almost semi-free action -- 1.3. Equivariant homotopy -- 1.4. The extension degree -- 1.5. Equivariant homotopy groups of spheres -- 1.6. Equivariant degree in the almost semi-free case -- CHAPTER TWO: EXTENSIONS OF 5[sup(1)]-MAPS -- 2.1. The fundamental cell lemma -- 2.2. The Extension Theorem -- 2.3. The Extension degree -- 2.4. Properties of the Extension degree -- CHAPTER THREE: HOMOTOPY GROUPS OF S[sup(1)]-MAPS -- 3.1. Trivial invariant part, the case p ≥ 1 -- 3.2. Nontrivial invariant part, the case p = 0 -- 3.3. Behavior under suspension -- 3.4. Relationship with the set of K-degrees -- 3.5. Symmetry Breaking -- CHAPTER FOUR: DEGREE OF S[sup(1)]-MAPS -- 4.1. Range of deg[sub(S1)](f -- Ω) -- 4.2. Infinite dimensional degree -- 4.3. Computation of the S[sup(1)]-degree -- 4.4. Global Continuation -- 4.5. Global Bifurcation -- CHAPTER FIVE: S[sup(1)]-INDEX OF AN ISOLATED NON-STATIONARY ORBIT AND APPLICATIONS -- 5.1. The case p ≥ 1 -- 5.2. The case p = 0 -- 5.3. p = 0, hyperbolic orbits -- 5.4. Autonomous differential equations -- 5.5. Gradient maps -- 5.6. Differential equations with fixed period -- 5.7. Differential equations with first integrals -- 5.8 Symmetry breaking for differential equations -- CHAPTER SIX: INDEX OF AN ISOLATED ORBIT OF STATIONARY SOLUTIONS AND APPLICATIONS -- 6.1. Computation of the S[sup(1)-Index -- 6.2. Application to bifurcation -- 6.3. Hopf bifurcation for autonomous differential equations -- 6.4. Hopf bifurcation for systems with first integrals -- 6.5. Hopf bifurcation and symmetry breaking -- CHAPTER SEVEN: VIRTUAL PERIODS AND ORBIT INDEX -- 7.1. Virtual periods -- 7.2. The Orbit Index -- APPENDIX: ADDITIVITY UP TO ONE SUSPENSION -- REFERENCES.
588 _aDescription based on publisher supplied metadata and other sources.
590 _aElectronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2024. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
650 0 _aTopological degree.
650 0 _aMappings (Mathematics).
650 0 _aHomotopy groups.
650 0 _aSphere.
655 4 _aElectronic books.
700 1 _aMassabo, Ivar.
700 1 _aVignoli, Alfonso.
776 0 8 _iPrint version:
_aIze, Jorge
_tDegree Theory for Equivariant Maps, the General S1-Action
_dProvidence : American Mathematical Society,c1992
_z9780821825426
797 2 _aProQuest (Firm)
830 0 _aMemoirs of the American Mathematical Society
856 4 0 _uhttps://ebookcentral.proquest.com/lib/orpp/detail.action?docID=3114010
_zClick to View
999 _c69541
_d69541