000 04275nam a22004813i 4500
001 EBC3114004
003 MiAaPQ
005 20240729124557.0
006 m o d |
007 cr cnu||||||||
008 240724s1984 xx o ||||0 eng d
020 _a9781470407179
_q(electronic bk.)
020 _z9780821823057
035 _a(MiAaPQ)EBC3114004
035 _a(Au-PeEL)EBL3114004
035 _a(CaPaEBR)ebr10918957
035 _a(OCoLC)922981525
040 _aMiAaPQ
_beng
_erda
_epn
_cMiAaPQ
_dMiAaPQ
050 4 _aQA3 -- .E34 1984eb
082 0 _a512/.72
100 1 _aEie, Minking.
245 1 0 _aDimensions of Spaces of Siegel Cusp Forms of Degree Two and Three.
250 _a1st ed.
264 1 _aProvidence :
_bAmerican Mathematical Society,
_c1984.
264 4 _c©1984.
300 _a1 online resource (194 pages)
336 _atext
_btxt
_2rdacontent
337 _acomputer
_bc
_2rdamedia
338 _aonline resource
_bcr
_2rdacarrier
490 1 _aMemoirs of the American Mathematical Society ;
_vv.50
505 0 _aIntro -- TABLE OF CONTENTS -- LIST OF NOTATIONS -- INTRODUCTION -- CHAPTER I: CONJUGACY CLASSES OF Sp (2 , Z) -- 1.1 Introduction -- 1.2 Representatives of conjugacy classes of finite order elements -- 1.3 Conjugacy classes of finite order elements in Sp (2 , Z) -- 1.4 Conjugacy classes of Γ1[sup(∞)] -- 1.5 Conjugacy classes of Γ0[sup(∞)] -- CHAPTER II: DIMENSION FORMULA FOR THE VECTOR SPACE OF CUSP FORMS OF DEGREE TWO WITH RESPECT TO Sp (2 , Z) -- 2.1 Introduction -- 2.2 Contributions from elliptic conjugacy classes -- 2.3 Contributions from conjugacy classes of elements having a one-dimensional set of fixed points (I) -- 2.4 Contributions from conjugacy classes of elements having a one-dimensional set of fixed points (II) -- 2.5 Contributions from conjugacy classes of elements having a two-dimensional set of fixed points -- 2.6 Contributions from conjugacy classes of unipotent elements -- 2.7 A dimension formula for the vector space of cusp forms with respect to Sp (2 , Z) -- CHAPTER III: REPRESENTATIVES OF CONJUGACY CLASSES OF ELEMENTS OF Sp (3 , Z) IN Sp (3 , R) -- 3.1 Introduction -- 3.2 Conjugacy classes of torsion elements in Sp (3 , Z) -- 3.3 A classification of conjugacy classes of Sp (3 , Z) -- 3.4 Selberg's trace formula and its modification -- 3.5 Conjugacy classes with zero contribution (I) -- 3.6 Conjugacy classes with zero contribution (II) -- CHAPTER IV: CONTRIBUTIONS FROM CONJUGACY CLASSES IN Δ ∪ Δ[sub(1)] ∪ Δ[sub(2)] ∪ Δ[sub(0)] -- 4.1 Introduction -- 4.2 Contributions from elliptic conjugacy classes -- 4.3 Contributions from conjugacy classes of elements having a one-dimensional set of fixed points -- 4.4 Contributions from conjugacy classes of elements having a one-dimensional set of fixed points -- 4.5 Contributions from conjugacy classes of elements having a two-dimensional set of fixed points.
505 8 _a4.6 Second case of conjugacy classes of elements having a one-dimensional set of fixed points -- 4.7 Second case of conjugacy classes of elements having a two-dimensional set of fixed points -- CHAPTER V: CONTRIBUTIONS FROM CONJUGACY CLASSES IN Δ[sub(0)] -- 5.1 Introduction -- 5.2 A dimension formula for the principal congruencesubgroup Γ[sub(2)](N) -- 5.3 Contributions from Δ[sub(0)](I) -- 5.4 A dimension formula for the principal congruence subgroup Γ[sub(3)](N) -- 5.5 Contributions from Δ[sub(0)](II) -- 5.6 A final remark -- REFERENCES.
588 _aDescription based on publisher supplied metadata and other sources.
590 _aElectronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2024. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
650 0 _aCusp forms (Mathematics).
650 0 _aSelberg trace formula.
650 0 _aIntegrals.
655 4 _aElectronic books.
776 0 8 _iPrint version:
_aEie, Minking
_tDimensions of Spaces of Siegel Cusp Forms of Degree Two and Three
_dProvidence : American Mathematical Society,c1984
_z9780821823057
797 2 _aProQuest (Firm)
830 0 _aMemoirs of the American Mathematical Society
856 4 0 _uhttps://ebookcentral.proquest.com/lib/orpp/detail.action?docID=3114004
_zClick to View
999 _c69535
_d69535