000 02429nam a22004693i 4500
001 EBC3113971
003 MiAaPQ
005 20240729124556.0
006 m o d |
007 cr cnu||||||||
008 240724s1989 xx o ||||0 eng d
020 _a9781470408374
_q(electronic bk.)
020 _z9780821824771
035 _a(MiAaPQ)EBC3113971
035 _a(Au-PeEL)EBL3113971
035 _a(CaPaEBR)ebr10918924
035 _a(OCoLC)851088343
040 _aMiAaPQ
_beng
_erda
_epn
_cMiAaPQ
_dMiAaPQ
050 4 _aQA3 -- .V664 1989eb
082 0 _a512/.3
100 1 _aVonessen, Nikolaus.
245 1 0 _aActions of Linearly Reductive Groups on Affine Pi-Algebras.
250 _a1st ed.
264 1 _aProvidence :
_bAmerican Mathematical Society,
_c1989.
264 4 _c©1989.
300 _a1 online resource (114 pages)
336 _atext
_btxt
_2rdacontent
337 _acomputer
_bc
_2rdamedia
338 _aonline resource
_bcr
_2rdacarrier
490 1 _aMemoirs of the American Mathematical Society ;
_vv.81
505 0 _aIntro -- Contents -- Abstract -- 0. Introduction -- 1. Statements of results -- 2. Preliminaries -- 3. The trace ring -- 4. Affine fixed rings -- 5. Borho theory -- 6. The correspondence Φ:Spec R „o Spec R[sup(G)] -- 7. Lying over -- 8. Characterizations of linearly reductive groups through actions on affine PI-algebras -- 9. Actions by inner automorphisms -- 9.1. Spec-inner automorphisms -- 9.2. A Bergman-Isaacs theorem, chain conditions, and integrality -- 9.3. Prime ideals in the ring extension R[sup(G)] [omitted] R -- 9.4. Connections with actions of finite groups -- References.
588 _aDescription based on publisher supplied metadata and other sources.
590 _aElectronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2024. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
650 0 _aGalois theory.
650 0 _aAssociative algebras.
650 0 _aNoetherian rings.
655 4 _aElectronic books.
776 0 8 _iPrint version:
_aVonessen, Nikolaus
_tActions of Linearly Reductive Groups on Affine Pi-Algebras
_dProvidence : American Mathematical Society,c1989
_z9780821824771
797 2 _aProQuest (Firm)
830 0 _aMemoirs of the American Mathematical Society
856 4 0 _uhttps://ebookcentral.proquest.com/lib/orpp/detail.action?docID=3113971
_zClick to View
999 _c69502
_d69502