000 05329nam a22004933i 4500
001 EBC3113936
003 MiAaPQ
005 20240729124555.0
006 m o d |
007 cr cnu||||||||
008 240724s1994 xx o ||||0 eng d
020 _a9781470401146
_q(electronic bk.)
020 _z9780821825990
035 _a(MiAaPQ)EBC3113936
035 _a(Au-PeEL)EBL3113936
035 _a(CaPaEBR)ebr10918889
035 _a(OCoLC)891396578
040 _aMiAaPQ
_beng
_erda
_epn
_cMiAaPQ
_dMiAaPQ
050 4 _aQA404.5 -- .L485 1994eb
082 0 _a515/.55
100 1 _aLevin, A.L.
245 1 0 _aChristoffel Functions and Orthogonal Polynomials for Exponential Weights on
_[-1, 1]
_.
250 _a1st ed.
264 1 _aProvidence :
_bAmerican Mathematical Society,
_c1994.
264 4 _c©1994.
300 _a1 online resource (166 pages)
336 _atext
_btxt
_2rdacontent
337 _acomputer
_bc
_2rdamedia
338 _aonline resource
_bcr
_2rdacarrier
490 1 _aMemoirs of the American Mathematical Society ;
_vv.111
505 0 _aIntro -- Table of Contents -- 1. Introduction and Results -- Definition 1.1: The class W -- Theorem 1.2: Christoffel Functions -- Corollary 1.3: Sup-Norms of Christoffel Functions -- Corollary 1.4: Zeros -- Corollary 1.5: Bounds on Orthonormal Polynomials -- Theorem 1.6: Sup-Norm Christoffel Functions -- Theorem 1.7: Restricted Range Inequalities -- Theorem 1.8: L[sub(p)] Norms of Orthonormal Polynomials -- 2. Some Ideas Behind the Proofs -- I. An Orthogonal Polynomial Angle -- II. The Potential Theory Side: Lower Bounds for λ[sub(n)] -- III. The Potential Theory Side: Upper Bounds for λ[sub(n)] -- IV. The Orthogonal Polynomials Angle: An(x) -- 3. Technical Estimates -- Lemma 3.1: Estimates involving Q -- Lemma 3.2: Estimates involving α[sub(u)] -- Lemma 3.3: More estimates involving α[sub(u)] -- Lemma 3.4: Estimates for Δ[sub(n)](s,t) -- Lemma 3.5: Differences involving Δ[sub(n)](s,t) -- 4. Estimates for the Density Functions μ[sub(n)] -- Lemma 4.1: Old estimates for μ[sub(n)] -- Theorem 4.2: Estimates for μ[sub(n)] on all of („1,1) -- Theorem 4.3: Differences involving μ[sub(n)] -- Proof of Theorem 4.2 -- Proof of Theorem 4.3 (b) -- Proof of Theorem 4.3 (a) -- 5. Majorization Functions and Integral Equations -- Lemma 5.1: Old Potential Theory/Integral Equations -- Lemma 5.2: Estimates for B[sub(n,R)],v[sub(n,R)] -- Theorem 5.3: Estimates for U[sub(n,R)] -- 6. The Proof of Theorem 1.7 -- Lemma 6.1: L[sub(p)] Bounds for Weighted Polynomials -- Proof of Theorem 1.7 -- 7. Lower Bounds for λ[sub(n)] -- Theorem 7.1: Lower Bounds for μ[sub(n)] -- Lemma 7.2: Preliminary Lower Bounds -- Proof of Theorem 7.1 -- 8. Discretisation of a Potential: Theorem 1.6 -- Theorem 8.1: One Point Polynomials -- Deduction of Theorem 1.6 -- Theorem 8.2: The Bounds for Γ[sub(n)] -- Deduction of Theorem 8.1 -- Lemma 8.3: Estimates for the discretisation points.
505 8 _aLemma 8.4: Estimates for S[sub(1)]+[sub(4)] -- Lemma 8.5: Estimates for μ[sub(j)] -- Lemma 8.6: Estimates for τ[sub(j)] -- Lemma 8.7: Estimates for S[sub(21)] -- Lemma 8.8: Lower Bounds for S[sub(2)] -- Lemma 8.9: Upper Bounds for S[sub(2)] -- Lemma 8.10: Bounds for S[sub(3)] -- Proof of Theorem 8.2 -- 9. Upper Bounds for λ[sub(n)]: Theorems 1.2 and Corollary 1.3 -- Lemma 9.1: Preliminary Upper Bounds for μ[sub(n)] -- Proof of Theorem 1.2 -- Proof of Corollary 1.3 -- 10. Zeros: Corollary 1.4 -- Proof of Corollary 1.4 (i) -- Lemma 10.1: Series Equivalent to wω[sup(…2)] -- Proof of a Weaker Form of Corollary 1.4 (ii) -- 11. Bounds on Orthogonal Polynomials: Corollary 1.5 -- Lemma 11.1: An Identity for P'[sub(n)](x[sub(jn)]) -- Lemma 11.2: A Bound for I[sub(1)] -- Lemma 11.3: An Integral Estimate -- Lemma 11.4: An Estimate for I[sub(2)] -- Lemma 11.5: An Estimate for I[sub(3)] -- Theorem 11.6: Implicit Bounds for A[sub(n)] -- Proof of the Upper Bounds for Orthogonal Polynomials -- Lemma 11.7: A Further Integral Estimate -- Theorem 11.8: Good Estimates for A[sub(n)] -- Proof of Corollary 1.5 (iii) -- Lemma 11.9: A Markov-Bernstein Inequality -- Proof of the Lower Bounds for Orthogonal Polynomials -- 12. L[sub(p)] Norms of Orthonormal Polynomials: Theorem 1.8 -- Upper Bounds for L[sub(p)] Norms of Orthonormal Polynomials -- Lemma 12.2: Fundamental Polynomials of Interpolation -- Lower Bounds for L[sub(p)] Norms of Orthonormal Polynomials -- Proof of Corollary 1.4 (ii) -- References.
588 _aDescription based on publisher supplied metadata and other sources.
590 _aElectronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2024. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
650 0 _aOrthogonal polynomials.
650 0 _aChristoffel-Darboux formula.
650 0 _aConvergence.
655 4 _aElectronic books.
700 1 _aLubinsky, D.S.
776 0 8 _iPrint version:
_aLevin, A.L.
_tChristoffel Functions and Orthogonal Polynomials for Exponential Weights on
_[-1, 1]
_dProvidence : American Mathematical Society,c1994
_z9780821825990
797 2 _aProQuest (Firm)
830 0 _aMemoirs of the American Mathematical Society
856 4 0 _uhttps://ebookcentral.proquest.com/lib/orpp/detail.action?docID=3113936
_zClick to View
999 _c69467
_d69467