000 03315nam a22004693i 4500
001 EBC3113898
003 MiAaPQ
005 20240729124553.0
006 m o d |
007 cr cnu||||||||
008 240724s1987 xx o ||||0 eng d
020 _a9781470407933
_q(electronic bk.)
020 _z9780821824368
035 _a(MiAaPQ)EBC3113898
035 _a(Au-PeEL)EBL3113898
035 _a(CaPaEBR)ebr10918851
035 _a(OCoLC)891385382
040 _aMiAaPQ
_beng
_erda
_epn
_cMiAaPQ
_dMiAaPQ
050 4 _aQA3 -- .E34 1987eb
082 0 _a510
100 1 _aEie, Minking.
245 1 0 _aDimension Formulae for the Vector Spaces of Siegel Cusp Forms of Degree Three.
250 _a1st ed.
264 1 _aProvidence :
_bAmerican Mathematical Society,
_c1987.
264 4 _c©1987.
300 _a1 online resource (134 pages)
336 _atext
_btxt
_2rdacontent
337 _acomputer
_bc
_2rdamedia
338 _aonline resource
_bcr
_2rdacarrier
490 1 _aMemoirs of the American Mathematical Society ;
_vv.70
505 0 _aIntro -- TABLE OF CONTENTS -- LIST OF NOTATIONS -- INTRODUCTION -- CHAPTER I: FIXED POINTS AND CONJUGACY OF REGULAR ELLIPTIC ELEMENTS IN Sp(3, Z) -- 1.1 Introduction -- 1.2 Notations and basic results -- 1.3 Reducible cases -- 1.4 Symplectic embeddings of Q(e[(2πi/9)]) and Q(e[(2πi/7)]) -- 1.5 Application -- CHAPTER II: CONJUGACY CLASSES OF THE MODULAR GROUP Sp(3, Z) -- 2.1 Introduction -- 2.2 Basic results -- 2.3 Conjugacy classes of Γ[sup(2)][sub(3)] -- 2.4 Conjugacy classes of Γ[sup(1)][sub(3)] -- 2.5 Conjugacy classes of Γ[sup(3)][sub(0)] -- 2.6 Applications and further remarks -- CHAPTER III: EXPLICIT EVALUATIONS -- 3.1 Introduction -- 3.2 Contributions from conjugacy classes of regular elliptic elements -- 3.3 Contribution from conjugacy classes in Γ[sup(2)][sub(3)] -- 3.4 Contributions from conjugacy classes in Γ[sup(1)][sub(3)] -- 3.5 Contributions from conjugacy classes in Γ[sup(0)][sub(3)] -- 3.6 An explicit dimension formula for Siegel cusp forms of degree three -- 3.7 Autemorphic forms of degree three and its generating function -- CHAPTER IV: DIMENSION FORMULAE FOR THE VECTOR SPACES OF SIEGEL CUSP FORMS OF DEGREE THREE -- 4.1 Introduction -- 4.2 Eie's results -- 4.3 Conjugacy classes of Sp(3, Z) -- 4.4 The main terms -- 4.5 Determination of C[sub(1)], C[sub(2)] and C[sub(3)] -- 4.6 The partial fractions of the generating function -- 4.7 The generating function for modular form of degree four -- REFERENCES.
588 _aDescription based on publisher supplied metadata and other sources.
590 _aElectronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2024. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
650 0 _aCusp forms (Mathematics).
650 0 _aSelberg trace formula.
650 0 _aIntegrals.
655 4 _aElectronic books.
776 0 8 _iPrint version:
_aEie, Minking
_tDimension Formulae for the Vector Spaces of Siegel Cusp Forms of Degree Three
_dProvidence : American Mathematical Society,c1987
_z9780821824368
797 2 _aProQuest (Firm)
830 0 _aMemoirs of the American Mathematical Society
856 4 0 _uhttps://ebookcentral.proquest.com/lib/orpp/detail.action?docID=3113898
_zClick to View
999 _c69429
_d69429