000 02445nam a22004693i 4500
001 EBC3113873
003 MiAaPQ
005 20240729124553.0
006 m o d |
007 cr cnu||||||||
008 240724s1989 xx o ||||0 eng d
020 _a9781470408176
_q(electronic bk.)
020 _z9780821824603
035 _a(MiAaPQ)EBC3113873
035 _a(Au-PeEL)EBL3113873
035 _a(CaPaEBR)ebr10918826
035 _a(OCoLC)851086122
040 _aMiAaPQ
_beng
_erda
_epn
_cMiAaPQ
_dMiAaPQ
050 4 _aQA564 -- .S39 1989eb
082 0 _a512/.33
100 1 _aSchwartz, Niels.
245 1 0 _aBasic Theory of Real Closed Spaces.
250 _a1st ed.
264 1 _aProvidence :
_bAmerican Mathematical Society,
_c1989.
264 4 _c©1989.
300 _a1 online resource (134 pages)
336 _atext
_btxt
_2rdacontent
337 _acomputer
_bc
_2rdamedia
338 _aonline resource
_bcr
_2rdacarrier
490 1 _aMemoirs of the American Mathematical Society ;
_vv.77
505 0 _aIntro -- CONTENTS -- INTRODUCTION -- CHAPTER I: REAL CLOSED RINGS -- 1. Preliminaries on real spectra -- 2. Definition of real closures -- 3. Algebraic properties of real closures -- 4. Real closed rings -- CHAPTER II: REAL CLOSED SPACES -- 1. Definition of real closed spaces -- 2. Subspaces -- 3. Fibre products -- 4. Quasi-compact, quasi-separated and separated morphisms -- 5. Regular morphisms -- 6. Universally closed morphisms -- 7. Finiteness conditions -- CHAPTER III: SEMI-ALGEBRAIC SPACES -- 1. Semi-algebraic spaces as real closed spaces -- 2. Fibre products -- 3. Separatedness and regularity -- 4. Universal closedness -- REFERENCES.
588 _aDescription based on publisher supplied metadata and other sources.
590 _aElectronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2024. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
650 0 _aSchemes (Algebraic geometry).
650 0 _aCommutative algebra.
650 0 _aOrdered fields.
655 4 _aElectronic books.
776 0 8 _iPrint version:
_aSchwartz, Niels
_tBasic Theory of Real Closed Spaces
_dProvidence : American Mathematical Society,c1989
_z9780821824603
797 2 _aProQuest (Firm)
830 0 _aMemoirs of the American Mathematical Society
856 4 0 _uhttps://ebookcentral.proquest.com/lib/orpp/detail.action?docID=3113873
_zClick to View
999 _c69404
_d69404