000 | 04137nam a22004813i 4500 | ||
---|---|---|---|
001 | EBC3113850 | ||
003 | MiAaPQ | ||
005 | 20240729124552.0 | ||
006 | m o d | | ||
007 | cr cnu|||||||| | ||
008 | 240724s1995 xx o ||||0 eng d | ||
020 |
_a9781470401467 _q(electronic bk.) |
||
020 | _z9780821804018 | ||
035 | _a(MiAaPQ)EBC3113850 | ||
035 | _a(Au-PeEL)EBL3113850 | ||
035 | _a(CaPaEBR)ebr10918803 | ||
035 | _a(OCoLC)851088505 | ||
040 |
_aMiAaPQ _beng _erda _epn _cMiAaPQ _dMiAaPQ |
||
050 | 4 | _aQA177 -- .L485 1995eb | |
082 | 0 | _a514/.24 | |
100 | 1 | _aLevi, Ran. | |
245 | 1 | 0 | _aOn Finite Groups and Homotopy Theory. |
250 | _a1st ed. | ||
264 | 1 |
_aProvidence : _bAmerican Mathematical Society, _c1995. |
|
264 | 4 | _c©1995. | |
300 | _a1 online resource (121 pages) | ||
336 |
_atext _btxt _2rdacontent |
||
337 |
_acomputer _bc _2rdamedia |
||
338 |
_aonline resource _bcr _2rdacarrier |
||
490 | 1 |
_aMemoirs of the American Mathematical Society ; _vv.118 |
|
505 | 0 | _aIntro -- Contents -- Abstract -- Preface -- Acknowledgements -- Part 1: The Homology and Homotopy Theory Associated with ΩBπ[sup(^)[sub(p)] -- Chapter 1. Introduction -- 1.1. Statement of Results -- 1.2. Organization of Part 1 -- Chapter 2. Preliminaries -- 2.1. Some Facts on the R-Completion Functor -- 2.2. Mod-R Acyclic Spaces and Proposition 1.1.2 -- 2.3. The Quillen "Plus" Construction -- Chapter 3. A model for S[sub(*)]ΩX[sup(^)sub(R)] -- 3.1. An Algebraic "Plus" Construction -- 3.2. Proof of Theorems 1.1.2 and 1.1.3 -- Chapter 4. Homology Exponents for ΩBπ[sup(^)[sub(p)] -- 4.1. Extended Maps and Homotopies -- 4.2. Proof of Theorem 1.1.1 -- Chapter 5. Examples for Homology Exponents -- 5.1. Groups with a Dihedral Sylow 2-Subgroup -- 5.2. Groups with a Semidihedral Sylow 2-Subgroup -- Chapter 6. The Homotopy Groups of Bπ[sup(^)[sub(p)] -- 6.1. Some Basic Facts -- 6.2. Proof of Theorem 1.1.4 -- 6.3. Examples for Homotopy Exponents -- Chapter 7. Stable Homotopy Exponents for ΩBπ[sup(^)[sub(p)] -- 7.1. Preliminaries on the Transfer -- 7.2. Proof of Theorem 1.1.5 -- 7.3. The Non Existence of Exponents in π[sup(s)[sub(*)]ΩBπ[sup(^)[sub(p)] -- Part 2: Finite Groups and Resolutions by Fibrations -- Chapter 1. Introduction -- 1.1. Statement of Results -- 1.2. Organization of Part 2 -- Chapter 2. Preliminaries -- 2.1. Universal Central Extensions -- 2.2. Uniqueness of Homotopy Type, Special Case -- 2.3. Homotopy decomposition of Classifying Spaces -- 2.4. The Neisendorfer Fibre Square Lemma -- Chapter 3. Resolutions by Fibrations -- 3.1. Definition and Basic Examples -- 3.2. A Fibration Lemma -- 3.3. The mod-p Cohen Conjecture -- Chapter 4. Sporadic Examples -- 4.1. Groups with a Dihedral Sylow 2-Subgroup -- 4.2. Groups with a Semidihedral Sylow 2-Subgroup -- Chapter 5. Groups of Lie Type and S-Resolutions -- 5.1. Preliminary Theorems. | |
505 | 8 | _a5.2. A Spherical Fibre Square -- 5.3. Proof of Theorem 1.1.3 -- 5.4. The Groups SL[sub(n)](F[sub(q)] and Sp[sub(2n)](F[sub(q)] -- 5.5. Proof of Theorem 1.1.6 and Examples -- Chapter 6. Clark-Ewing Spaces and Groups -- 6.1. Construction -- 6.2. Spherical Resolutions of Loop Spaces on Clark-Ewing Spaces -- 6.3. Resolutions by Cohomological Considerations -- 6.4. Some Preliminaries from Representation Theory -- 6.5. Clark-Ewing Groups -- Chapter 7. Discussion -- References. | |
588 | _aDescription based on publisher supplied metadata and other sources. | ||
590 | _aElectronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2024. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries. | ||
650 | 0 | _aFinite groups. | |
650 | 0 | _aHomotopy theory. | |
650 | 0 | _aLoop spaces. | |
655 | 4 | _aElectronic books. | |
776 | 0 | 8 |
_iPrint version: _aLevi, Ran _tOn Finite Groups and Homotopy Theory _dProvidence : American Mathematical Society,c1995 _z9780821804018 |
797 | 2 | _aProQuest (Firm) | |
830 | 0 | _aMemoirs of the American Mathematical Society | |
856 | 4 | 0 |
_uhttps://ebookcentral.proquest.com/lib/orpp/detail.action?docID=3113850 _zClick to View |
999 |
_c69381 _d69381 |