000 04137nam a22004813i 4500
001 EBC3113850
003 MiAaPQ
005 20240729124552.0
006 m o d |
007 cr cnu||||||||
008 240724s1995 xx o ||||0 eng d
020 _a9781470401467
_q(electronic bk.)
020 _z9780821804018
035 _a(MiAaPQ)EBC3113850
035 _a(Au-PeEL)EBL3113850
035 _a(CaPaEBR)ebr10918803
035 _a(OCoLC)851088505
040 _aMiAaPQ
_beng
_erda
_epn
_cMiAaPQ
_dMiAaPQ
050 4 _aQA177 -- .L485 1995eb
082 0 _a514/.24
100 1 _aLevi, Ran.
245 1 0 _aOn Finite Groups and Homotopy Theory.
250 _a1st ed.
264 1 _aProvidence :
_bAmerican Mathematical Society,
_c1995.
264 4 _c©1995.
300 _a1 online resource (121 pages)
336 _atext
_btxt
_2rdacontent
337 _acomputer
_bc
_2rdamedia
338 _aonline resource
_bcr
_2rdacarrier
490 1 _aMemoirs of the American Mathematical Society ;
_vv.118
505 0 _aIntro -- Contents -- Abstract -- Preface -- Acknowledgements -- Part 1: The Homology and Homotopy Theory Associated with ΩBπ[sup(^)[sub(p)] -- Chapter 1. Introduction -- 1.1. Statement of Results -- 1.2. Organization of Part 1 -- Chapter 2. Preliminaries -- 2.1. Some Facts on the R-Completion Functor -- 2.2. Mod-R Acyclic Spaces and Proposition 1.1.2 -- 2.3. The Quillen "Plus" Construction -- Chapter 3. A model for S[sub(*)]ΩX[sup(^)sub(R)] -- 3.1. An Algebraic "Plus" Construction -- 3.2. Proof of Theorems 1.1.2 and 1.1.3 -- Chapter 4. Homology Exponents for ΩBπ[sup(^)[sub(p)] -- 4.1. Extended Maps and Homotopies -- 4.2. Proof of Theorem 1.1.1 -- Chapter 5. Examples for Homology Exponents -- 5.1. Groups with a Dihedral Sylow 2-Subgroup -- 5.2. Groups with a Semidihedral Sylow 2-Subgroup -- Chapter 6. The Homotopy Groups of Bπ[sup(^)[sub(p)] -- 6.1. Some Basic Facts -- 6.2. Proof of Theorem 1.1.4 -- 6.3. Examples for Homotopy Exponents -- Chapter 7. Stable Homotopy Exponents for ΩBπ[sup(^)[sub(p)] -- 7.1. Preliminaries on the Transfer -- 7.2. Proof of Theorem 1.1.5 -- 7.3. The Non…Existence of Exponents in π[sup(s)[sub(*)]ΩBπ[sup(^)[sub(p)] -- Part 2: Finite Groups and Resolutions by Fibrations -- Chapter 1. Introduction -- 1.1. Statement of Results -- 1.2. Organization of Part 2 -- Chapter 2. Preliminaries -- 2.1. Universal Central Extensions -- 2.2. Uniqueness of Homotopy Type, Special Case -- 2.3. Homotopy decomposition of Classifying Spaces -- 2.4. The Neisendorfer Fibre Square Lemma -- Chapter 3. Resolutions by Fibrations -- 3.1. Definition and Basic Examples -- 3.2. A Fibration Lemma -- 3.3. The mod-p Cohen Conjecture -- Chapter 4. Sporadic Examples -- 4.1. Groups with a Dihedral Sylow 2-Subgroup -- 4.2. Groups with a Semidihedral Sylow 2-Subgroup -- Chapter 5. Groups of Lie Type and S-Resolutions -- 5.1. Preliminary Theorems.
505 8 _a5.2. A Spherical Fibre Square -- 5.3. Proof of Theorem 1.1.3 -- 5.4. The Groups SL[sub(n)](F[sub(q)] and Sp[sub(2n)](F[sub(q)] -- 5.5. Proof of Theorem 1.1.6 and Examples -- Chapter 6. Clark-Ewing Spaces and Groups -- 6.1. Construction -- 6.2. Spherical Resolutions of Loop Spaces on Clark-Ewing Spaces -- 6.3. Resolutions by Cohomological Considerations -- 6.4. Some Preliminaries from Representation Theory -- 6.5. Clark-Ewing Groups -- Chapter 7. Discussion -- References.
588 _aDescription based on publisher supplied metadata and other sources.
590 _aElectronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2024. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
650 0 _aFinite groups.
650 0 _aHomotopy theory.
650 0 _aLoop spaces.
655 4 _aElectronic books.
776 0 8 _iPrint version:
_aLevi, Ran
_tOn Finite Groups and Homotopy Theory
_dProvidence : American Mathematical Society,c1995
_z9780821804018
797 2 _aProQuest (Firm)
830 0 _aMemoirs of the American Mathematical Society
856 4 0 _uhttps://ebookcentral.proquest.com/lib/orpp/detail.action?docID=3113850
_zClick to View
999 _c69381
_d69381