000 04089nam a22005053i 4500
001 EBC3113817
003 MiAaPQ
005 20240729124551.0
006 m o d |
007 cr cnu||||||||
008 240724s1985 xx o ||||0 eng d
020 _a9781470407421
_q(electronic bk.)
020 _z9780821823309
035 _a(MiAaPQ)EBC3113817
035 _a(Au-PeEL)EBL3113817
035 _a(CaPaEBR)ebr10918770
035 _a(OCoLC)891384113
040 _aMiAaPQ
_beng
_erda
_epn
_cMiAaPQ
_dMiAaPQ
050 4 _aQA612.33 -- .A373 1985eb
082 0 _a512/.55
100 1 _aAisbett, Janet E.
245 1 0 _aOn (K-Z-n) and K-Fq(t)-(t2).
250 _a1st ed.
264 1 _aProvidence :
_bAmerican Mathematical Society,
_c1985.
264 4 _c©1985.
300 _a1 online resource (210 pages)
336 _atext
_btxt
_2rdacontent
337 _acomputer
_bc
_2rdamedia
338 _aonline resource
_bcr
_2rdacarrier
490 1 _aMemoirs of the American Mathematical Society ;
_vv.57
505 0 _aIntro -- Table of Contents -- On K[sub(3)](Z/p[sup(n)]) and K[sub(4)](Z/p[sup(n)]) -- Introduction -- I.1: Some results from algebraic topology -- I.2: Some explicit differentials -- I.3: Proofs -- I.4: Filtration of H* (M[sub(n)]Z/p[sup(2)] -- Z) -- II.1: Results of Evens-Friedlander, Lluis &amp -- Snaith -- II.2: K[sub(3)](Z/p[sup(2))] for primes p &gt -- 3 -- II.3: K[sub(3)](Z/4) = Z/12 -- II.4: K[sub(3)](Z/9) = Z/8 ⊕ Z/9 -- Appendix to II.1 -- III.1: Mod p cohomology of ker(SL[sub(n)]Z/p[sup(3)] → SL[sub(n)]Z/p) -- III.2: Mod p cohomology of ker(SL[sub(n)]Z/p[sup(k)] → SL[sub(n)]Z/p), k &gt -- 3 -- 1st Appendix to III.1 (case p = 2) -- 2nd Appendix to III.1 (commutator relations, and the SL[sub(n)]Z/p - action -- IV.l: Integral cohomology of ker(SL[sub(n)]Z/p[sup(k)] → SL[sub(n)] Z/p) -- IV.2: SL[sub(n)]Z/p - invariants in H4[sup(4)](- -- Z) of this kernel -- Appendix to IV. 1 -- Appendix to IV. 2 -- V.1: K[sub(3)](Z/p[sup(k)]), K[sub(4)](Z/p[sup(k)]) for k an odd prime -- V.2: K[sub(3)](Z/2[sup(k)]) -- VI.1: Maps induced by reduction SLZ → SLZ/p[sup(k)] -- Notation -- Bibliography -- On K[sub(3)(IF[sub(pl)][t]/(t[sup(2)]) and K[sub(3)](Z/q),p an odd prime -- 1: Introduction -- 2: Proofs of 1.1/1.2 -- 3: Group cohomology calculations -- Bibliography -- On K[sub(3)]of dual numbers -- Introduction - statement of results -- 1: Computations of some k*-invariants -- 2: Computation of H[sup(i)](T[sub(n)]k -- H[sup(1)](M[sub(n)]k)) for i = 0, 1 and 2 -- 3: R[sub(n)] - invariants in H[sup(2)](M[sub(n)]k) -- 4: Estimates of H[sup(1)](T[sub(n)]k -- H[sup(2)](M[sub(n)]k)) -- 5: Vanishing of H[sup(1)](GL[sub(n)]k -- H[sup(2)](M[sub(n)]k)) -- 6: GL[sub(n) - invariants of H[sup(3)](M[sub(n)]k) -- 7: H[sub(*)](GLk -- H[sub(*)](M∞k)) as a Hopf algebra -- 8: Explicit generators for H[sub(2)](SLk -- H[sub(1)](M[sub(n)]k)).
505 8 _a9: Determination of K[sub(3)](IF [sub(2m)[ε] -- 10: On K[sub(3)](Z/4) and K[sub(3)] of Witt vectors, W[sub(2)](IF [sub(2m)] -- 11:Some classes in H[sub(3)](SLK -- H[sub(1)](MεK)) and their d[sub(2)]…differential -- 12: List of notations and formulae for group actions -- Appendix: Homological Stability of the Steinberg Group over the integers -- Bibliography.
588 _aDescription based on publisher supplied metadata and other sources.
590 _aElectronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2024. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
650 0 _aK-theory.
650 0 _aHomology theory.
650 0 _aSpectral sequences (Mathematics).
655 4 _aElectronic books.
700 1 _aLluis-Puebla, Emilio.
700 1 _aSnaith, Victor P.
776 0 8 _iPrint version:
_aAisbett, Janet E.
_tOn (K-Z-n) and K-Fq(t)-(t2)
_dProvidence : American Mathematical Society,c1985
_z9780821823309
797 2 _aProQuest (Firm)
830 0 _aMemoirs of the American Mathematical Society
856 4 0 _uhttps://ebookcentral.proquest.com/lib/orpp/detail.action?docID=3113817
_zClick to View
999 _c69348
_d69348