000 | 04089nam a22005053i 4500 | ||
---|---|---|---|
001 | EBC3113817 | ||
003 | MiAaPQ | ||
005 | 20240729124551.0 | ||
006 | m o d | | ||
007 | cr cnu|||||||| | ||
008 | 240724s1985 xx o ||||0 eng d | ||
020 |
_a9781470407421 _q(electronic bk.) |
||
020 | _z9780821823309 | ||
035 | _a(MiAaPQ)EBC3113817 | ||
035 | _a(Au-PeEL)EBL3113817 | ||
035 | _a(CaPaEBR)ebr10918770 | ||
035 | _a(OCoLC)891384113 | ||
040 |
_aMiAaPQ _beng _erda _epn _cMiAaPQ _dMiAaPQ |
||
050 | 4 | _aQA612.33 -- .A373 1985eb | |
082 | 0 | _a512/.55 | |
100 | 1 | _aAisbett, Janet E. | |
245 | 1 | 0 | _aOn (K-Z-n) and K-Fq(t)-(t2). |
250 | _a1st ed. | ||
264 | 1 |
_aProvidence : _bAmerican Mathematical Society, _c1985. |
|
264 | 4 | _c©1985. | |
300 | _a1 online resource (210 pages) | ||
336 |
_atext _btxt _2rdacontent |
||
337 |
_acomputer _bc _2rdamedia |
||
338 |
_aonline resource _bcr _2rdacarrier |
||
490 | 1 |
_aMemoirs of the American Mathematical Society ; _vv.57 |
|
505 | 0 | _aIntro -- Table of Contents -- On K[sub(3)](Z/p[sup(n)]) and K[sub(4)](Z/p[sup(n)]) -- Introduction -- I.1: Some results from algebraic topology -- I.2: Some explicit differentials -- I.3: Proofs -- I.4: Filtration of H* (M[sub(n)]Z/p[sup(2)] -- Z) -- II.1: Results of Evens-Friedlander, Lluis & -- Snaith -- II.2: K[sub(3)](Z/p[sup(2))] for primes p > -- 3 -- II.3: K[sub(3)](Z/4) = Z/12 -- II.4: K[sub(3)](Z/9) = Z/8 ⊕ Z/9 -- Appendix to II.1 -- III.1: Mod p cohomology of ker(SL[sub(n)]Z/p[sup(3)] → SL[sub(n)]Z/p) -- III.2: Mod p cohomology of ker(SL[sub(n)]Z/p[sup(k)] → SL[sub(n)]Z/p), k > -- 3 -- 1st Appendix to III.1 (case p = 2) -- 2nd Appendix to III.1 (commutator relations, and the SL[sub(n)]Z/p - action -- IV.l: Integral cohomology of ker(SL[sub(n)]Z/p[sup(k)] → SL[sub(n)] Z/p) -- IV.2: SL[sub(n)]Z/p - invariants in H4[sup(4)](- -- Z) of this kernel -- Appendix to IV. 1 -- Appendix to IV. 2 -- V.1: K[sub(3)](Z/p[sup(k)]), K[sub(4)](Z/p[sup(k)]) for k an odd prime -- V.2: K[sub(3)](Z/2[sup(k)]) -- VI.1: Maps induced by reduction SLZ → SLZ/p[sup(k)] -- Notation -- Bibliography -- On K[sub(3)(IF[sub(pl)][t]/(t[sup(2)]) and K[sub(3)](Z/q),p an odd prime -- 1: Introduction -- 2: Proofs of 1.1/1.2 -- 3: Group cohomology calculations -- Bibliography -- On K[sub(3)]of dual numbers -- Introduction - statement of results -- 1: Computations of some k*-invariants -- 2: Computation of H[sup(i)](T[sub(n)]k -- H[sup(1)](M[sub(n)]k)) for i = 0, 1 and 2 -- 3: R[sub(n)] - invariants in H[sup(2)](M[sub(n)]k) -- 4: Estimates of H[sup(1)](T[sub(n)]k -- H[sup(2)](M[sub(n)]k)) -- 5: Vanishing of H[sup(1)](GL[sub(n)]k -- H[sup(2)](M[sub(n)]k)) -- 6: GL[sub(n) - invariants of H[sup(3)](M[sub(n)]k) -- 7: H[sub(*)](GLk -- H[sub(*)](M∞k)) as a Hopf algebra -- 8: Explicit generators for H[sub(2)](SLk -- H[sub(1)](M[sub(n)]k)). | |
505 | 8 | _a9: Determination of K[sub(3)](IF [sub(2m)[ε] -- 10: On K[sub(3)](Z/4) and K[sub(3)] of Witt vectors, W[sub(2)](IF [sub(2m)] -- 11:Some classes in H[sub(3)](SLK -- H[sub(1)](MεK)) and their d[sub(2)] differential -- 12: List of notations and formulae for group actions -- Appendix: Homological Stability of the Steinberg Group over the integers -- Bibliography. | |
588 | _aDescription based on publisher supplied metadata and other sources. | ||
590 | _aElectronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2024. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries. | ||
650 | 0 | _aK-theory. | |
650 | 0 | _aHomology theory. | |
650 | 0 | _aSpectral sequences (Mathematics). | |
655 | 4 | _aElectronic books. | |
700 | 1 | _aLluis-Puebla, Emilio. | |
700 | 1 | _aSnaith, Victor P. | |
776 | 0 | 8 |
_iPrint version: _aAisbett, Janet E. _tOn (K-Z-n) and K-Fq(t)-(t2) _dProvidence : American Mathematical Society,c1985 _z9780821823309 |
797 | 2 | _aProQuest (Firm) | |
830 | 0 | _aMemoirs of the American Mathematical Society | |
856 | 4 | 0 |
_uhttps://ebookcentral.proquest.com/lib/orpp/detail.action?docID=3113817 _zClick to View |
999 |
_c69348 _d69348 |