000 02455nam a22004813i 4500
001 EBC3113815
003 MiAaPQ
005 20240729124551.0
006 m o d |
007 cr cnu||||||||
008 240724s1994 xx o ||||0 eng d
020 _a9781470400934
_q(electronic bk.)
020 _z9780821825525
035 _a(MiAaPQ)EBC3113815
035 _a(Au-PeEL)EBL3113815
035 _a(CaPaEBR)ebr10918768
035 _a(OCoLC)922981335
040 _aMiAaPQ
_beng
_erda
_epn
_cMiAaPQ
_dMiAaPQ
050 4 _aQA351 -- .K334 1994eb
082 0 _a515/.52
100 1 _aKadell, Kevin W.J.
245 1 0 _aProof of the Q-Macdonald-Morris Conjecture for BCn.
250 _a1st ed.
264 1 _aProvidence :
_bAmerican Mathematical Society,
_c1994.
264 4 _c©1994.
300 _a1 online resource (93 pages)
336 _atext
_btxt
_2rdacontent
337 _acomputer
_bc
_2rdamedia
338 _aonline resource
_bcr
_2rdacarrier
490 1 _aMemoirs of the American Mathematical Society ;
_vv.108
505 0 _aIntro -- Table of Contents -- 1. Introduction -- 2. Outline of the proof and summary -- 3. The simple roots and reflections of B[sub(n)] and C[sub(n)] -- 4. The g-engine of our q-machine -- 5. Removing the denominators -- 6. The q-transportation theory for BC[sub(n)] -- 7. Evaluation of the constant terms A, E, K, F and Z -- 8. q-analogues of some functional equations -- 9. g-transportation theory revisited -- 10. A proof of Theorem 4 -- 11. The parameter r -- 12. The g-Macdonald-Morris conjecture for B[sub(n)], B[sup(v)][sub(n)], C[sub(n)], C[sup(v)][sub(n)] and D[sub(n)] -- 13. Conclusion.
588 _aDescription based on publisher supplied metadata and other sources.
590 _aElectronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2024. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
650 0 _aBeta functions.
650 0 _aDefinite integrals.
650 0 _aSelberg trace formula.
655 4 _aElectronic books.
700 1 _aSchon, Rolf.
776 0 8 _iPrint version:
_aKadell, Kevin W.J.
_tProof of the Q-Macdonald-Morris Conjecture for BCn
_dProvidence : American Mathematical Society,c1994
_z9780821825525
797 2 _aProQuest (Firm)
830 0 _aMemoirs of the American Mathematical Society
856 4 0 _uhttps://ebookcentral.proquest.com/lib/orpp/detail.action?docID=3113815
_zClick to View
999 _c69346
_d69346